
COMPUTER PROGRAMMING AND
PROGRAMMING LANGUAGES

Laboratory papers

RISOPRINT
Cluj-Napoca, 2024

ISBN 978-973-53-3271-6

Teodora SANISLAV

Teodora SANISLAV

Computer Programming and Programming Languages

LABORATORY PAPERS

Editura RISOPRINT
Cluj-Napoca, 2024

CPPL

Contents

1 C Input/Output (I/O) 8
1.1 Overview . 9
1.2 Theoretical Considerations . 9

1.2.1 scanf and printf . 9
1.2.2 sscanf and sprintf . 11
1.2.3 getchar and putchar . 12
1.2.4 gets and puts . 13

1.3 Lab Tasks . 13
1.4 References . 14

2 Data Types and Expressions in C 15
2.1 Overview . 16
2.2 Theoretical Considerations . 16

2.2.1 Basic data types in C . 16
2.2.2 Expressions in C . 18
2.2.3 Operators in C . 18
2.2.4 Data types default conversions . 22

2.3 Lab Tasks . 24
2.4 References . 26

3 Statements in C 27
3.1 Overview . 28
3.2 Theoretical Considerations . 28

3.2.1 Labeled statements . 28
3.2.2 Expression statements . 28
3.2.3 Decision making (selection) statements 29
3.2.4 Loop (iteration) statements . 32
3.2.5 Jump statements . 34

3.3 Lab Tasks . 36
3.4 References . 39

4 Pointers in C 40
4.1 Overview . 41
4.2 Theoretical Considerations . 41

4.2.1 Pointer variable definition . 41
4.2.2 Pointer variable initialization (assignment) 41
4.2.3 Dereferencing a pointer . 42
4.2.4 Pointer to void . 43
4.2.5 Constant pointers . 43

1

CPPL

4.2.6 Pointer arithmetic . 44
4.2.7 Pointers and arrays . 45
4.2.8 Array of pointers . 46
4.2.9 Pointer to pointer . 48

4.3 Lab Tasks . 49
4.4 References . 50

5 Functions in C 51
5.1 Overview . 52
5.2 Theoretical Considerations . 52

5.2.1 Function definition . 52
5.2.2 Function declaration . 53
5.2.3 Function call . 54
5.2.4 Function pointers . 58
5.2.5 Recursion . 60
5.2.6 The C Standard Library . 62

5.3 Lab Tasks . 63
5.4 References . 64

6 Dynamic Memory Allocation and Modular Programming 65
6.1 Overview . 66
6.2 Theoretical Considerations . 66

6.2.1 Dynamic memory allocation . 66
6.2.2 Variables’ scope . 68
6.2.3 Modular programming . 69

6.3 Lab Tasks . 74
6.4 References . 74

7 Strings in C 75
7.1 Overview . 76
7.2 Theoretical Considerations . 76

7.2.1 String variable definition and initialization 76
7.2.2 Internal memory representation of a string 77
7.2.3 Array of strings . 77
7.2.4 Internal memory representation of an array of strings 78
7.2.5 Standard string processing functions 78

7.3 Lab Tasks . 82
7.4 References . 82

8 Structures, Unions and Enumerations in C 83
8.1 Overview . 84
8.2 Theoretical Considerations . 84

8.2.1 Structures . 84
8.2.2 Unions . 87
8.2.3 Enumerations . 89
8.2.4 Defining data types using symbolic names 90

8.3 Lab Tasks . 91
8.4 References . 92

2

CPPL

9 Files in C 93
9.1 Overview . 94
9.2 Theoretical Considerations . 94

9.2.1 fopen . 94
9.2.2 fclose . 95
9.2.3 fputc, fputs, fprintf . 95
9.2.4 fgetc, fgets, fscanf . 96
9.2.5 fseek . 96
9.2.6 fwrite . 98
9.2.7 fread . 98

9.3 Lab Tasks . 99
9.4 References . 100

10 Embedded Systems Programming Case Study 101
10.1 Overview . 102
10.2 Theoretical Considerations . 102

10.2.1 Webots installation and guided tour 102
10.2.2 Development of a Webots application 103

10.3 Lab Tasks . 109
10.4 References . 109

Appendix - Data Representation in Computer Memory 110

3

CPPL

List of Figures

4.1 Memory representation of a pointer to integer definition and initialization
(a pointer is represented on 8 bytes if a 64-bit machine is used, otherwise it
requires only 4 bytes). var1 integer is represented in little endian format. . . 42

4.2 Memory representation of an array of integers definition and initialization . 45
4.3 Memory representation of an array of two arrays of characters (strings)

definition and initialization . 47

5.1 Analysis of Listing 5.1 – call by value (adapted from [1]) 56
5.2 Analysis of Listing 5.2 – call by reference (adapted from [1]) 57

7.1 Memory representation of a string definition and initialization 77
7.2 Memory representation of an array of two arrays of characters (strings)

definition and initialization . 79

10.1 Robotic arms simulation running in Webots 103
10.2 Webots graphical user interface to choose a directory for the new project . . 103
10.3 Webots graphical user interface to choose a name for the world file 104
10.4 Summary of the folders and files generated 104
10.5 Add a node dialog . 105
10.6 Virtual world after creating and positioning the objects (PROTO nodes) . . 105
10.7 Webots graphical user interfaces to create a robot’s controller 106
1 Example of an unsigned integer number representation 111
2 Example of a negative integer number representation 112
3 Floats representation . 113
4 Example of a positive float number representation 114
5 Doubles representation . 114
6 Example of a negative double number representation 115
7 Example of an unsigned character representation 116
8 Example of a signed character representation 116

4

CPPL

List of Tables

1.1 Characters of format specifiers and their corresponding data types 10

2.1 C basic data types . 16
2.2 C operators . 18
2.3 C arithmetic operators [2] . 19
2.4 C increment/decrement operators [2] . 19
2.5 C relational operators [2] . 20
2.6 C logical operators [2] . 20
2.7 C bitwise operators [3] . 20
2.8 C assignment operators [2] . 21
2.9 C conditional operator . 21
2.10 C special operators . 22
2.11 C operators precedence and associativity [3, 4] 23

5.1 C Standard Library headers ([2]) . 62

9.1 Access modes for text files [1] . 95
9.2 Constants that indicate the location where the offset starts 97

5

CPPL

Listings

1.1 Program L1Ex1.c . 10
1.2 Program L1Ex2.c . 11
1.3 Program L1Ex3.c . 12
1.4 Program L1Ex4.c . 12
1.5 Program L1Ex5.c . 13
2.1 Program L2Ex1.c . 17
2.2 Program L2Ex2.c . 19
2.3 Program L2Ex3.c . 21
2.4 Program L2Ex4.c . 22
2.5 Program L2Ex5.c . 24
3.1 Program L3Ex1.c . 28
3.2 Program L3Ex2.c . 30
3.3 Program L3Ex3.c . 31
3.4 Program L3Ex4.c . 32
3.5 Program L3Ex5.c . 33
3.6 Program L3Ex6.c . 34
3.7 Program L3Ex7.c . 35
3.8 Program L3Ex8.c . 35
4.1 Program L4Ex1.c . 42
4.2 Program L4Ex2.c . 45
4.3 Program L4Ex3.c . 46
4.4 Program L4Ex4.c . 47
4.5 Program L4Ex5.c . 48
4.6 Program L4Ex6.c . 48
5.1 Program L5Ex1.c . 55
5.2 Program L5Ex2.c . 55
5.3 Program L5Ex3.c . 57
5.4 Program L5Ex4.c . 58
5.5 Program L5Ex5.c . 59
5.6 Program L5Ex6.c . 60
5.7 Program L5Ex7.c . 61
6.1 Program L6Ex1.c . 67
6.2 matrix.h . 70
6.3 matrix.c . 70
6.4 main.c . 73
7.1 Program L7Ex1.c . 77
7.2 Program L7Ex2.c . 81
8.1 Program L8Ex1.c . 86
8.2 Program L8Ex2.c . 86

6

CPPL

8.3 Program L8Ex3.c . 88
8.4 Program L8Ex4.c . 90
9.1 Program L9Ex1.c . 97
9.2 Program L9Ex2.c . 98
10.1 Program L10Ex1.c . 106

7

CPPL

Laboratory paper 1

C Input/Output (I/O)

8

CPPL C Input/Output (I/O)

1.1 Overview

– Presentation of the input (I) and output (O) built-in library functions
– Use of the I/O functions within simple C programs
– Work time: 2 hours

1.2 Theoretical Considerations

Input (I) refers to supplying data to a program, which can be done through a file or by
entering a sequence of characters in the command line. Output (O) denotes presenting
data on a screen, printer, or saving it in a file.

In the C programming language, all I and O operations are handled through streams
(files), which consist of sequences of characters organized into lines. According to ANSI C
standards each line must be at least 254 characters long and concludes with the ’\n’ ("new-
line" character). When a C program runs, the following three streams are automatically
opened to facilitate access to the keyboard (for reading data) and screen (for displaying
data):

– Standard input stream (stdin) – connected to the keyboard;
– Standard output stream (stdout) – connected to the screen;
– Standard error stream (stderr) – connected to the screen.

The C programming language provides various built-in library functions for performing
I/O tasks, which are listed in the <stdio.h> header file. The most commonly used are
the following:

– For input: scanf, sscanf, getchar, gets;
– For output: printf, sprintf, putchar, puts.

1.2.1 scanf and printf

The scanf function reads the input data from the standard input stream (stdin), con-
verts the data to their corresponding internal representations according to the format
provided, and stores the obtained representations of data in the variables provided as
arguments. The end of the input is indicated when the ENTER key is pressed [1].

The prototype of the scanf function is:
1 i n t s can f (const char ∗ format [, &va r i ab l e 1] [, &va r i ab l e 2] . . .) ;

scanf returns the number of items that were successfully read.
The format for scanf is specified as a character string enclosed in double quotes (").

The format string includes format specifiers, which define the conversion rules and have
the following form: %[*][width]type, where:

– * (optional) – character that signifies that the input data read from stdin are not
assigned to any variable;

– width (optional) – decimal number which defines the maximum length of the data
to be read;

– type – one or two characters which define the data type of the conversion result.

The characters defining the type of conversion data are given in Table 1.1.
The & character before a variable name provides the address of that variable, thus

telling the system where to store the input data. There is no & character before a variable
name, if the variable is a single dimensional (one-dimensional) array (i.e., character string).

Lab 1 9

CPPL C Input/Output (I/O)

Table 1.1: Characters of format specifiers and their corresponding data types

Character Data type
c Signed character (char).
s Character string (char *).
d Integer as a signed decimal number (int).
u Integer as an unsigned decimal number (unsigned int).
o Integer as an octal number.
x, X Integer as a hexadecimal number.
hd, hu Integer as a short decimal number (short int),

unsigned short decimal number (unsigned short int).
ld, lo, lx, lX Integer as long decimal (long int), long octal, long hexadecimal.
lu Integer as a long unsigned decimal number (unsigned long int).
f Floating-point number (float).
lf Double floating-point number (double).
Lf Long double floating-point number (long double).

The printf function converts the data into their corresponding external representations
based on the provided format and writes the output data to the standard output stream
(stdout) [1].

The prototype of the printf function is:
1 i n t p r i n t f (const char ∗ format [, e xp r e s s i on l i s t]) ;

printf returns the number of characters that were successfully written to the output.
The format for printf is defined as a character string enclosed in double quotes (").

This format string includes character sequences that will be displayed along with for-
mat specifiers. A format specifier follows the pattern: %[flags][width][.precision]type,
where:

– flag (optional) – has the values:

– ’-’ which specifies that the data to be displayed will be left-justified (the default
justification is right-justification);

– ’+’ which mandates that the displayed data be preceded by a + or - sign, even
for positive numbers;

– ’#’ which forces to precede the displayed data with 0, 0x or 0X when it is used
with o, x or X type for values different than zero;

– ’0’ which left-pads the displayed data with zeros instead of spaces;

– width (optional) – decimal number which indicates the minimum length of the field
which will hold the displayed data;

– precision (optional) – decimal number specifying the precision;
– type – one or two characters which define the data type of the conversion result. In

addition to the characters used by the scanf function, characters ’e’ or ’E’ can also
be used for displaying floating point data (in single or double precision) in scientific
notation, as well as ’p’ for displaying the pointer data type in hexadecimal.

Listing 1.1 presents several calls of the scanf and printf functions.
1 #inc lude <s td i o . h>
2 i n t main () {
3 char test_char = ’ \0 ’ ;
4 char t e s t_s t r i ng [1 0] = "" ;
5 i n t t e s t_ in t eg e r = 0 ;

Lab 1 10

CPPL C Input/Output (I/O)

6 f l o a t t e s t_ f l o a t = 0 .0 f ;
7

8 p r i n t f ("Enter a charac t e r : ") ;
9 s can f ("%c" , &test_char) ;

10 p r i n t f ("Character entered = %c\n" , test_char) ;
11

12 p r i n t f ("Enter an array o f cha ra c t e r s : ") ;
13 s can f ("%s " , t e s t_s t r i ng) ;
14 p r i n t f ("Array o f cha ra t e r s entered = %s\n" , t e s t_s t r i ng) ;
15

16 p r i n t f ("Enter an i n t e g e r : ") ;
17 s can f ("%d" , &te s t_ in t eg e r) ;
18 p r i n t f (" In t eg e r va lue entered = %d\n" , t e s t_ in t eg e r) ;
19 p r i n t f ("Octal va lue = %#o , Hexadecimal va lue = %#X\n" , t e s t_intege r ,

t e s t_ in t eg e r) ;
20

21 p r i n t f ("Enter a f l o a t number : ") ;
22 s can f ("%f " , &t e s t_ f l o a t) ;
23 p r i n t f ("Float value entered = %f \n" , t e s t_ f l o a t) ;
24 re turn 0 ;
25 }

Listing 1.1: Program L1Ex1.c

Listing 1.2 presents several calls of the printf function which highlight different formats
for displaying integer and float values.

1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t integer_no = 45678 ;
4 f l o a t f loat_no = 456.789 f ;
5

6 p r i n t f ("45678 r i gh t j u s t i f i e d to 6 columns : %6d\n" , integer_no) ;
7 p r i n t f (" 456 .789 rounded to 2 d i g i t s : %.2 f \n" , f loat_no) ;
8 p r i n t f (" 456 .789 rounded to 0 d i g i t s : %. f \n" , f loat_no) ;
9 p r i n t f (" 456 .789 in exponent i a l form : %e\n" , f loat_no) ;

10 p r i n t f (" 456 .789 r i gh t j u s t i f i e d to 8 columns and rounded to 2 d i g i t s :
%8.2 f \n" , f loat_no) ;

11 re turn 0 ;
12 }

Listing 1.2: Program L1Ex2.c

1.2.2 sscanf and sprintf

The sscanf function reads formatted input from a character string [2]. Unlike the scanf
function, sscanf has an additional first argument that indicates the character string from
which the data are read, instead of using the standard input stream (stdin).

The prototype of the sscanf function is:
1 i n t s s c an f (const char ∗ s t r , const char ∗ format [, &va r i ab l e 1] [, &va r i ab l e 2]

. . .) ;

sscanf returns the number of variables that were successfully filled.
The sprintf function sends formatted output to a character string [2]. Unlike the

printf function, sprintf includes an additional first argument that indicates the character
string where the data will be written, rather than directing the output to the standard
output stream (stdout).

Lab 1 11

CPPL C Input/Output (I/O)

The prototype of the sprintf function is:
1 i n t s p r i n t f (char ∗ s t r , const char ∗ format [, e xp r e s s i on l i s t]) ;

sprintf returns the total number of characters written, excluding the ’\0’ (NULL
character) that is appended at the end of the character string [2].

Listing 1.3 presents several calls of the sscanf and sprintf functions.
1 #inc lude <s td i o . h>
2 i n t main () {
3 char ∗ input = "2 4 5 .25 " , output [1 0 0] = "" ;
4 i n t a = 0 , b = 0 ;
5 f l o a t c = 0 .0 f , sum = 0.0 f ;
6

7 s s c an f (input , "%d%d%f " , &a , &b , &c) ;
8 p r i n t f ("a = %d b = %d c = %.2 f \n" , a , b , c) ;
9 sum = a + b + c ;

10 s p r i n t f (output , "%.2 f " , sum) ;
11 p r i n t f ("Sum of a , b and c i s %s . \ n" , output) ;
12 re turn 0 ;
13 }

Listing 1.3: Program L1Ex3.c

1.2.3 getchar and putchar

The getchar function reads a character from the standard input stream (stdin) and
returns it as an integer (the ASCII code of the character) [1]. The end of the input is
indicated when the ENTER key is pressed.

The prototype of the getchar function is:
1 i n t getchar (void) ;

getchar returns the character read as an unsigned character cast to an integer upon
success.

The putchar function writes the character given as an argument (the ASCII code of
the character) on the standard output stream (stdout) [1].

The prototype of the putchar function is:
1 i n t putchar (i n t char) ;

putchar returns the character written as an unsigned character cast to an integer on
success.

Listing 1.4 exemplifies the use of the getchar and putchar functions.
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t ch = 0 ;
4

5 p r i n t f ("Enter a charac t e r : ") ;
6 ch=getchar () ;
7 p r i n t f ("You entered : ") ;
8 putchar (ch) ;
9 p r i n t f ("\nASCII code o f %c : %d\n" , ch , ch) ;

10 re turn 0 ;
11 }

Listing 1.4: Program L1Ex4.c

Lab 1 12

CPPL C Input/Output (I/O)

1.2.4 gets and puts

The gets function reads a line from the standard input stream (stdin) and stores it
into a character string given as its argument [1]. It stops reading when either the ’\n’
("newline" character) is encountered or the end-of-file is reached.

The prototype of the gets function is:
1 char ∗ ge t s (char ∗ s t r) ;

gets returns a character string on success.
The puts function writes a character string given as its argument to the standard

output stream (stdout) [1].
The prototype of the puts function is:

1 i n t puts (const char ∗ s t r) ;

puts returns a non-negative value upon succes.
Listing 1.5 exemplifies the use of the gets and puts functions.

1 #inc lude <s td i o . h>
2 i n t main () {
3 char name [5 0] = "" ;
4 char cp [1 0 0] = "" ;
5

6 p r i n t f ("What i s your name?\n") ;
7 ge t s (name) ;
8 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
9 p r i n t f ("Well , %s , what do you study ?\n" , name) ;

10 ge t s (cp) ;
11 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
12 puts ("Let me see i f I got i t : ") ;
13 puts (name) ;
14 puts (" s t ud i e s ") ;
15 puts (cp) ;
16 re turn 0 ;
17 }

Listing 1.5: Program L1Ex5.c

1.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Identify and fix the errors in each of the statements below:
a) int int_num = 0; printf("The value is %d\n", &int_num);
b) int int_num1 = 0, int_num2 = 0; scanf("%d%d", &int_num1, int_num2);
c) int x = 0, y = 0; printf("The sum of %d and %d is %d.\n, x, y);
d) double x = 0.00, y = 0.00; print("The product is %d.\n," x * y);
e) gets();
f) int int_num1 = 0, int_num2 = 0; sscanf("%d%d", &int_num1, &int_num2);
g) getchar(10);

3. Write a C program to output the Euler’s number e = 2.718281 using various floating
point format specifiers (4 calls of the printf function are required).

4. Write a C program to present the integer values from 0 to 15 in three columns,
showing their decimal, octal, and hexadecimal representations.

5. Write a C program to display the characters that are on the keyboard.

Lab 1 13

CPPL C Input/Output (I/O)

6. Write a C program to display the following:

1 12345
12 1234

123 123
1234 12

12345 1

7. Write a C program to calculate and display the product of three integers read from
the keyboard.

8. Write a C program to calculate and display the result of addition, subtraction, mul-
tiplication, division and average of two real numbers read from the keyboard.

1.4 References

1. Iosif Ignat, Programarea calculatoarelor: indrumator de lucrari de laborator, 2003,
Second edition, U.T.Press, Cluj-Napoca, ISBN: 973-662-024-7.

2. Paul Deitel, Harvey Deitel, C How to Program, 2022, Ninth edition, Pearson Educa-
tion, ISBN: 978-0-13-739839-3.

Lab 1 14

CPPL

Laboratory paper 2

Data Types and Expressions in C

15

CPPL Data Types and Expressions in C

2.1 Overview

– Presentation of basic data types in C
– Presentation of expressions in C
– Presentation of C operators
– Presentation of data types default conversions
– Use of expressions and operators within simple C programs
– Work time: 2 hours

2.2 Theoretical Considerations

2.2.1 Basic data types in C

A data type is a format for data storage that encompasses a range of values. It is used
to define variables, constants, arrays, pointers or functions before they can be utilized in
a program. Table 2.1 presents the C programming language basic data types (char, int,
float, double), as defined in the C89/C99/C11/C17/C23 versions of the C standard. These
standards do not define the size for each data type, but only the range, and the space
allocated in the computer’s memory depends on the system.

Table 2.1: C basic data types

32-bit machine
Data type Size Range
char 1 byte (8 bits) -128 to 127 (−28−1 to 28−1 − 1)
signed char
unsigned char 1 byte (8 bits) 0 to 255 (0 to 28 − 1)

short 2 bytes (16 bits) -32768 to 32767 (−216−1 to 216−1 − 1)
short int
signed short
signed short int
unsigned short 2 bytes (16 bits) 0 to 65535 (0 to 216 − 1)
unsigned short int
int 4 bytes (32 bits) -2147483648 to 2147483647 (−232−1 to 232−1 − 1)
signed
signed int
unsigned 4 bytes (32 bits) 0 to 4294967295 (0 to 232 − 1)
unsigned int
long 4 bytes (32 bits) -2147483648 to 2147483647 (−232−1 to 232−1 − 1)
long int
signed long
signed long int
unsigned long 4 bytes (32 bits) 0 to 4294967295 (0 to 232 − 1)
unsigned long int
float (single-precision) 4 bytes (32 bits) 1.175E-038 to 3.403E+038 (6 digits precision)
double (double-precision) 8 bytes (64 bits) 2.225E-308 to 1.798E+308 (15 digits precision)
long double (extended-precision) 10 bytes (80 bits)

or 12 bytes (96 bits)
or 16 bytes (128 bits)

The <limits.h> header file includes definitions of the properties (i.e., range) of the
char and int data types. Some of them are [1]:

– CHAR_BIT – size of the char type in bits;
– CHAR_MIN, CHAR_MAX– minimum and maximum possible values for the char

type;

Lab 2 16

CPPL Data Types and Expressions in C

– MB_LEN_MAX – maximum number of bytes in a multibyte character;
– SCHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN – minimum possible values

for the signed char and signed integer types;
– SCHAR_MAX, SHRT_MAX, INT_MAX, LONG_MAX – maximum possible val-

ues for the signed char and signed integer types;
– UCHAR_MAX, USHRT_MAX, UINT_MAX, ULONG_MAX – maximum possible

values for the unsigned char and unsigned integer types.

The <float.h> header file includes definitions of the properties (i.e., range, precision)
of floating-point data types. Some of them are (note that in all cases, FLT refers to float,
DBL refers to double, and LDBL refers to long double) [1]:

– FLT_MIN, DBL_MIN, LDBL_MIN – minimum normalized positive values for the
floating-point types;

– FLT_MAX, DBL_MAX, LDBL_MAX – maximum finite values for the floating-
point types;

– FLT_DIG, DBL_DIG, LDBL_DIG – number of decimal digits that can be repre-
sented without losing precision by the floating-point types;

– FLT_RADIX – radix of the exponent in the floating-point types;
– FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG – number of digits

in the floating-point significand.

Listing 2.1 computes the values presented in Table 2.1.
1 #inc lude <s td i o . h>
2 #inc lude <l im i t s . h>
3 #inc lude <f l o a t . h>
4 i n t main () {
5 p r i n t f ("−−−\n") ;
6 p r i n t f (" | Data type\ t \ t | Bytes \ t | Range\ t \ t \ t \ t | \ n") ;
7 p r i n t f ("−−−\n") ;
8

9 p r i n t f (" | char \ t \ t \ t | %u\ t | %d to %d\ t \ t \ t | \ n" , s i z e o f (char) ,SCHAR_MIN,SCHAR_MAX) ;
10 p r i n t f (" | unsigned char \ t \ t | %u\ t | %d to %d\ t \ t \ t | \ n" , s i z e o f (unsigned char) , 0 ,

UCHAR_MAX) ;
11 p r i n t f ("−−−\n") ;
12

13 p r i n t f (" | shor t i n t \ t \ t | %u\ t | %d to %d\ t \ t | \ n" , s i z e o f (shor t i n t) , SHRT_MIN,
SHRT_MAX) ;

14 p r i n t f (" | unsigned shor t i n t \ t | %u\ t | %d to %d\ t \ t \ t | \ n" , s i z e o f (unsigned shor t
i n t) , 0 , USHRT_MAX) ;

15 p r i n t f ("−−−\n") ;
16

17 p r i n t f (" | i n t \ t \ t \ t | %u\ t | %d to %d\ t | \ n" , s i z e o f (i n t) , INT_MIN, INT_MAX) ;
18 p r i n t f (" | unsigned i n t \ t \ t | %u\ t | %d to %u\ t \ t | \ n" , s i z e o f (unsigned i n t) , 0 ,

UINT_MAX) ;
19 p r i n t f ("−−−\n") ;
20

21 p r i n t f (" | long i n t \ t \ t | %u\ t | %d to %d\ t | \ n" , s i z e o f (long i n t) ,LONG_MIN,LONG_MAX) ;
22 p r i n t f (" | unsigned long i n t \ t | %u\ t | %d to %u\ t \ t | \ n" , s i z e o f (unsigned long i n t) ,

0 , ULONG_MAX) ;
23 p r i n t f ("−−−\n") ;
24

25 p r i n t f (" | f l o a t \ t \ t \ t | %u\ t | %.3e to %.3e\ t | \ n" , s i z e o f (f l o a t) , FLT_MIN, FLT_MAX) ;
26 p r i n t f (" | double \ t \ t \ t | %u\ t | %.3e to %.3e\ t | \ n" , s i z e o f (double) ,DBL_MIN,DBL_MAX) ;
27 p r i n t f (" | long double \ t \ t | %u\ t | %.3e to %.3e\ t | \ n" , s i z e o f (long double) , LDBL_MIN

, LDBL_MAX) ;
28 p r i n t f (" P r e c i s i on o f f l o a t : %u d i g i t s . \ n" , FLT_DIG) ;
29 p r i n t f (" P r e c i s i on o f double : %u d i g i t s . \ n" , DBL_DIG) ;
30 p r i n t f (" P r e c i s i on o f long double : %u d i g i t s . \ n" , LDBL_DIG) ;
31 r e turn 0 ;
32 }

Listing 2.1: Program L2Ex1.c

Lab 2 17

CPPL Data Types and Expressions in C

Appendix - Data Representation in Computer Memory shows how the data related to
the basic data types of the C programming language are represented in the computer’s
memory.

2.2.2 Expressions in C

C expressions consist of one or more operands joined by operators.
An operand has a data type associated with it and a corresponding value. An operand

can be a constant, the name of a variable (scalar or array), an element of an array, the
name of a structure, a reference to an element of a structure, the name of a data type, the
name of a function, a function call, or an expression surrounded by brackets.

An operator is a symbol which performs various operations (i.e., logical, mathemati-
cal) [2].

Several C expressions are provided in the following listing.
1 a = b + 3 ; // a , b and 3 are operands ; = and + are ope ra to r s
2 ++z ; // z i s an operand ; ++ i s an operator
3 300 > (8 ∗ k [5]) ; // 300 , 8 , k [5] and (8 ∗ k [5]) are operands ; > and ∗ are

ope ra to r s

An expression is evaluated according to:

– Operators priority and associativity;
– Operands data types default conversions.

2.2.3 Operators in C

C offers many types of operators that can be classified as follows: arithmetic, incre-
ment/decrement, relational, logical, bitwise, assignment, conditional, and special operators
(Table 2.2). Some of them are unary, other are binary, and one of them is ternary.

Table 2.2: C operators

Type of operator Description
Arithmetic Used to perform mathematical calculations (+,-,*,/,%).
Increment/decrement Used to increase or decrease the value of the variable by one (++,−−).
Relational Used to compare the value of two given variables (<,>,<=,>=,==,!=).
Logical Used to perform logical operations on two given variables (&&,||,!).
Bitwise Used to perform bit operations on given two variables (&,|,∼,^,«,»).
Assignment Used to assign values for the variables (=,+=,-=,*=,/=,%=,&=,^=, |=, «=, »=).
Conditional Returns a value if condition is true and returns another value if condition is false.

(Condition ? true_value: false_value)
Special (), [], &, *, ., „->, sizeof(), (type-name)

Arithmetic operators

Table 2.3 presents the arithmetic operators available in C and their exemplification
using variable a (first operand) with a value of 10 and variable b with a value of 20 (second
operand).

Lab 2 18

CPPL Data Types and Expressions in C

Table 2.3: C arithmetic operators [2]

Operator Description Example
+ Addition operator a + b = 30

Adds two operands.
- Substraction operator a - b = -10

Subtracts the second operand from the first operand.
* Multiplication operator a * b = 200

Multiplies the first operand with the second operand.
/ Division operator b / a = 2

Divides the first operand by the second operand.
% Modulus operator a % b = 10

Computes the remainder after dividing the first operand by the second operand.

Increment/decrement operators

The increment operator is used to increase the value of an operand by one and the
decrement operator is used to decrease the value of an operand by one. They can be prefix
(++operand) or postfix (operand−−) (Table 2.4).

Table 2.4: C increment/decrement operators [2]

Operator Description Example
++ Increment operator

Increments the value of an operand by 1.
Prefix - the value after increment is used. ++a
Postfix - the value before increment is used. a++

−− Decrement operator
Decrements the value of an operand by 1.
Prefix - the value after decrement is used. −−a
Postfix - the value before decrement is used. a−−

Listing 2.2 presents the use of the prefix and postfix increment and decrement operators.
1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t a = 2 , b = 0 ;
4

5 b = a++ + a−− + ++a + −−a ;
6 p r i n t f ("Value o f a i s %d and value o f b i s %d . " , a , b) ;
7 re turn 0 ;
8 }

Listing 2.2: Program L2Ex2.c

Relational operators

Table 2.5 presents the relational operators available in C and their exemplification
using variable a (first operand) with a value of 10 and variable b with a value of 20 (second
operand). C evaluates all expressions that contain relational operators to 0 (false) or 1
(true).

Lab 2 19

CPPL Data Types and Expressions in C

Table 2.5: C relational operators [2]

Operator Description Example
== Equal to operator (a == b) is false

Verifies if the values of two operands are equal.
If yes, then the condition becomes true.

!= Not equal operator (a != b) is true
Verifies if the values of two operands are not equal.
If yes, then the condition becomes true.

> Greater than operator (a >b) is false
Verifies whether the value of the left operand is greater than the value of the right operand.
If yes, then the condition becomes true.

< Less than operator (a <b) is true
Verifies whether the value of the left operand is less than the value of the right operand.
If yes, then the condition becomes true.

>= Greater than or equal to operator (a >= b) is false
Verifies whether the value of the left operand is greater than or equal to the value of the right operand.
If yes, then the condition becomes true.

<= Less than or equal to operator (a <= b) is true
Verifies whether the value of the left operand is less than or equal to the value of the right operand.
If yes, then the condition becomes true.

Logical operators

Table 2.6 presents the logical operators available in C and their exemplification using
variable a (first operand) with a value of 10 and variable b with a value of 0 (second
operand). C evaluates all expressions that contain logical operators to 0 (false) or 1 (true).

Table 2.6: C logical operators [2]

Operator Description Example
&& Logical AND operator (a && b) is false

If both operands are non-zero, the condition evaluates to true.
|| Logical OR operator (a || b) is true

If either of the two operands is non-zero, the condition evaluates to true.
! Logical NOT operator !(a && b) is true

It is used to reverse the logical state of its operand.

Bitwise operators

Table 2.7 presents the bitwise operators available in C. These operators work on bits
and execute bit-by-bit operations. Their exemplification using variable a (first operand)
with a value of 10 and variable b with a value of 0 (second operand) is also presented in
Table 2.7.

Table 2.7: C bitwise operators [3]

Operator Description Example
& Bitwise AND operator (a & b) = 0

The bits in the result are set to 1 if the corresponding bits in both operands are both 1.
| Bitwise OR operator (a | b) = 10

The bits in the result are set to 1 if at least one of the corresponding bits in either of the two operands is 1.
^ Bitwise exclusive OR operator (a ^ b) = 10

The bits in the result are set to 1 if exactly one of the corresponding bits in the two operands is 1.
∼ Bitwise (1’s) complement operator (∼a) = -11

All 0 bits are set to 1 and all 1 bits are set to 0.
« Left shift (a « 2) = 40

Shifts the bits of the first operand left by the number of bits specified by the second operand.
One left shift multiplies by 2 the first operand.

» Right shift (a » 2) = 2
Shifts the bits of the first operand right by the number of bits specified by the second operand.
One right shift divides by 2 the first operand.

Lab 2 20

CPPL Data Types and Expressions in C

Listing 2.3 presents the use of the bitwise AND operator to verify if an integer is even
or odd.

1 #inc lude <s td i o . h>
2 i n t main () {
3 unsigned i n t integer_no = 0 ;
4

5 p r i n t f ("Enter an unsigned i n t e g e r : ") ;
6 s can f ("%u" , &integer_no) ;
7 i f (integer_no & 1)
8 p r i n t f ("%u i s odd . " , integer_no) ;
9 e l s e

10 p r i n t f ("%u i s even . " , integer_no) ;
11 re turn 0 ;
12 }

Listing 2.3: Program L2Ex3.c

Assignment operators

Table 2.8 presents the assignment operators available in C and their exemplification
using the variables a and b.

Table 2.8: C assignment operators [2]

Operator Description Example
= Simple assignment operator a = b

Assigns values from right side operand to left side operand.
+= Add and assignment operator a += b is equivalent to a = a + b

Adds the right operand to the left operand and assigns the result to the left operand.
-= Subtract and assignment operator a -= b is equivalent to a = a - b

Subtracts the right operand from the left operand and assigns the result to the left operand.
*= Multiply and assignment operator a *= b is equivalent to a = a * b

Multiplies the right operand with the left operand and assigns the result to the left operand.
/= Divide and assignment operator a /= b is equivalent to a = a / b

Divides the left operand with the right operand and assigns the result to the left operand.
%= Modulus and assignment operator a %= b is equivalent to a = a % b

Takes modulus using two operands and assigns the result to the left operand.
«= Left shift and assignment operator a «= b is equivalent to a = a « b
»= Right shift and assignment operator a »= b is equivalent to a = a » b
&= Bitwise AND and assignment operator a &= b is equivalent to a = a & b
|= Bitwise OR and assignment operator a |= b is equivalent to a = a | b
^= Bitwise exclusive OR and assignment operator a ^= b is equivalent to a = a ^ b

Conditional operator

The conditional operator (Table 2.9) is the only ternary operator in C. It can be used
as a shortcut for an if ... else statement. It is typically used as part of a larger expression
where an if ... else statement would be awkward.

Table 2.9: C conditional operator

Operator Description Example
? : Conditional operator b = (a == 10) ? 20 : 30

If condition is true ? then value X : otherwise value Y.

Listing 2.4 presents the use of the conditional operator to verify whether an integer is
even or odd.

Lab 2 21

CPPL Data Types and Expressions in C

1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t integer_no = 0 ;
4

5 p r i n t f ("Enter an i n t e g e r : ") ;
6 s can f ("%d" , &integer_no) ;
7 (integer_no % 2 == 0) ? p r i n t f ("Even i n t e g e r . ") : p r i n t f ("Odd i n t e g e r . ") ;
8 re turn 0 ;
9 }

Listing 2.4: Program L2Ex4.c

Special operators

Table 2.10 shows the special operators available in C.

Table 2.10: C special operators

Operator Description Example
sizeof() Returns the size of a variable in bytes. sizeof(a), where a is an integer, returns 4
& Reference operator &a

Returns the address of a variable.
* Dereference operator *a

Returns the value stored at a particular address.
(type-name) Cast operator (float)a, where a is an integer

Performs typecasting.
() Functional call operator
[] Array element reference (subscripting) operator
. Direct member selection operator
–> Indirect member selection operator
, Separator of expressions

Operators precedence and associativity

There are rules that govern how the expressions in C get interpreted by the compiler.
Operators precedence and associativity rules are some of them. The precedence of the
operators determines their rank. The associativity determines the order of performing the
operations in which there are operators with the same precedence. Table 2.11 shows, from
highest to lowest, the C operators’ order of precedence and their associativity.

2.2.4 Data types default conversions

When expressions that contain operands of different data types are evaluated, the data
types of the operands are converted. These conversions can be performed implicitly or
explicitly:

– The implicit conversion, also called "type promotion", is done automatically by
the compiler without the intervention of programmers. The compiler converts the
operands of the expressions into the data type of the largest operand;

– The explicit type conversion is performed by the programmers who can tell the
compiler to treat a value as a certain data type, using the cast operator. To prevent
information loss during the conversion of expressions from one data type to another,
the following rules must be taken into consideration: all characters must be converted
to integers, all integers must be converted to floats, and all floats must be converted
to doubles.

Lab 2 22

CPPL Data Types and Expressions in C

Table 2.11: C operators precedence and associativity [3, 4]

Precedence Operator Meaning of operator Associativity
1 () Functional call Left to right

[] Array subscripting
-> Indirect member selection
. Direct member selection
++, -- Postfix increment and decrement

2 ! Logical NOT Right to left
∼ Bitwise(1’s) complement
+ Unary plus
- Unary minus
++, -- Prefix increment and decrement
& Reference
* Dereference
sizeof() Returns the size of a variable
(type-name) Cast

3 * Multiplication Left to right
/ Division
% Modulus

4 + Addition Left to right
- Subtraction

5 « Left shift Left to right
» Right shift

6 < Less than Left to right
<= Less than or equal to
> Greater than
>= Greater than or equal to

7 == Equal to Left to right
!= Not equal

8 & Bitwise AND Left to right
9 ^ Bitwise exclusive OR Left to right
10 | Bitwise OR Left to right
11 && Logical AND Left to right
12 || Logical OR Left to right
13 ?: Conditional operator Right to left
14 = Simple assignment Right to left

*= Multiply and assignment
/= Divide and assignment
%= Modulus and assignment
+= Add and assignment
-= Substract and assignment
&= Bitwise AND and assignment
^= Bitwise exclusive OR and assignment
|= Bitwise OR and assignment
«= Left shift and assignment
»= Right shift and assignment

15 , Separator of expressions Left to right

Lab 2 23

CPPL Data Types and Expressions in C

Listing 2.5 presents the explicit type conversion and emphasizes the difference between
floating-point division and integer division.

1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t integer_no = 5 ;
4 f l o a t f loat_no = integer_no / 6 ;
5

6 p r i n t f (" f loat_no = %.2 f \n" , f loat_no) ;
7 f loat_no = (f l o a t) integer_no / 6 ;
8 p r i n t f (" f loat_no = %.2 f \n" , f loat_no) ;
9 re turn 0 ;

10 }

Listing 2.5: Program L2Ex5.c

2.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Give examples of unary, binary and ternary operators.

3. What will be the output of the program?
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t value , number = 50 ;
4

5 value = (number > 30 ? (number < 60 ? 50 : 100) : 150) ;
6 p r i n t f ("%d\n" , va lue) ;
7 re turn 0 ;
8 }

A. 150
B. 100
C. 30
D. 50

4. What will be the output of the program?
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t i = 3 , j = 0 , k = 0 ;
4

5 j = 2 ∗ (i++) ;
6 k = 2 ∗ (++i) ;
7 p r i n t f (" i = %d j = %d k = %d" , i , j , k) ;
8 re turn 0 ;
9 }

A. i = 3 j = 8 k = 8
B. i = 5 j = 8 k = 10
C. i = 5 j = 6 k = 10
D. i = 4 j = 8 k = 8

Lab 2 24

CPPL Data Types and Expressions in C

5. What will be the output of the program?
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t x = 20 , y = 35 ;
4

5 x = y++ + x++;
6 y = ++y + ++x ;
7 p r i n t f ("x = %d y = %d" , x , y) ;
8 re turn 0 ;
9 }

A. x = 58 y = 93
B. x = 57 y = 94
C. x = 56 y = 93
D. x = 57 y = 84

6. What will be the output of the program?
1 #inc lude <s td i o . h>
2 i n t main () {
3 unsigned i n t x = 5 ;
4

5 p r i n t f ("x i s %u , x << 2 i s %u , x >> 2 i s %u" , x , x << 2 , x >> 2) ;
6 re turn 0 ;
7 }

A. x is 5, x « 2 is 21, x » 2 is 1
B. x is 5, x « 2 is 20, x » 2 is 1
C. x is 5, x « 2 is 19, x » 2 is 0
D. x is 5, x « 2 is 19, x » 2 is 1

7. Assuming i = 1, j = 2, k = 3, and m = 4, what does each of the following expressions
return?
a) printf("%d", m == 1);
b) printf("%d", i > 2 && j < 4);
c) printf("%d", m < 10 && k < m);
d) printf("%d", m >= j || k == i);
e) printf("%d", (i + j >= m) || (3 - k > j));
f) printf("%d", !k);
g) printf("%d", !(j - i));
h) printf("%d", !(k > m));

8. Write a C program to convert a real number, representing a measurement for an
angle in radians, to degrees, minutes, and seconds. The real number is read from
the keyboard and has values between 0 and 2*PI. Use the following formulas: an-
gle_degrees = angle_radians * 180/PI, degrees = integer part of angle_degrees,
minutes = integer part of the expression ((angle_degrees - degrees) * 60), and sec-
onds = (angle_degrees - degrees - (minutes / 60.0)) * 3600. The result should be
displayed like this: degrees◦minutes’seconds".

9. Write a C program to set the nth bit of an unsigned integer number read from the
keyboard. Use the following: left shift 1, n times, and then perform bitwise OR with
the unsigned integer number.

Lab 2 25

CPPL Data Types and Expressions in C

10. Write a C program to verify if a year, read from the keyboard, is leap or not using the
conditional operator. Use the following: if a year is divisible by 4 and not divisible
by 100, then it is a leap year; otherwise, if the year is divisible by 400, it is also a
leap year; otherwise, it is a common year.

2.4 References

1. Numeric limits, https://en.cppreference.com/w/c/types/limits, Accessed in
September 2024.

2. C − Operators, https://www.tutorialspoint.com/cprogramming/c_operators.
htm, Accessed in September 2024.

3. Paul Deitel, Harvey Deitel, C How to Program, 2022, Ninth edition, Pearson Educa-
tion, ISBN: 978-0-13-739839-3.

4. C Operator Precedence, https://en.cppreference.com/w/c/language/operato
r_precedence, Accessed in September 2024.

Lab 2 26

https://en.cppreference.com/w/c/types/limits
https://www.tutorialspoint.com/cprogramming/c_operators.htm
https://www.tutorialspoint.com/cprogramming/c_operators.htm
https://en.cppreference.com/w/c/language/operator_precedence
https://en.cppreference.com/w/c/language/operator_precedence

CPPL

Laboratory paper 3

Statements in C

27

CPPL Statements in C

3.1 Overview

– Presentation of statements in C
– Use of statements within simple C programs
– Work time: 4 hours

3.2 Theoretical Considerations

A statement is a directive issued to the computer that instructs it to perform a particular
action.

A computer program consists of a sequence of statements. C has the following state-
ments grouped into five categories:

– Labeled statements: case, default;
– Expression statements;
– Decision making (selection) statements: if (single-selection), if ... else (double-

selection), if ... else if ... else, switch (multiple-selection);
– Loop (iteration) statements: for, while, do ... while;
– Jump statements: break, continue, goto, return.

3.2.1 Labeled statements

A statement can be preceded by a label. A label is a simple identifier followed by a
colon. The syntax of this type of statements is:

identifier:

C has two labeled statements used in switch statements: case and default, but the
programmers can define more according to the algorithms they are implementing.

3.2.2 Expression statements

An expression statement comprises an expression followed by a semicolon. The syntax
of this type of statements is:

expression;

These statements are used as assignments or as function calls. Several expression
statements are provided in Listing 3.1.

1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t f i r s t_ i n t e g e r = 0 , second_integer = 0 , minimum = 0 ;
4

5 p r i n t f ("Enter two i n t e g e r s : ") ;
6 s can f ("%d %d" , &f i r s t_ i n t e g e r , &second_integer) ;
7 minimum = f i r s t_ i n t e g e r < second_integer ? f i r s t_ i n t e g e r : second_integer ;
8 p r i n t f ("The minimum of %d and %d i s %d .\ n" , f i r s t_ i n t e g e r , second_integer ,

minimum) ;
9 re turn 0 ;

10 }

Listing 3.1: Program L3Ex1.c

Lab 3 28

CPPL Statements in C

3.2.3 Decision making (selection) statements

The C language provides the following types of decision making statements:

– if statement – evaluates an expression and executes one or more statements when
the expression is true;

– if ... else statement – an if statement can be accompanied by an else statement,
which executes when the expression evaluates to false;

– if ... else if ... else statement – allows the evaluation of multiple expressions and
executes different blocks of code for more than two conditions;

– switch statement – allows an expression to be verified for equality against a list of
constant values.

if statement

The if statement has the following syntax:

if (expression) {
statement(s) to be executed if the expression is true;

}

This statement has the following effect [1]:

– The expression is evaluated.
– If the result of the evaluation is true, then the block of code inside the if statement

is executed.
– If the result of the evaluation is false, then the first statement after the end of the if

statement is executed.

if ... else statement

The if ... else statement has the following syntax:

if (expression) {
statement(s) to be executed if the expression is true;

}
else {

statement(s) to be executed if the expression is false;
}

This statement has the following effect [1]:

– The expression is evaluated.
– If the result of the evaluation is true, then the block of code inside the if is executed.
– If the result of the evaluation is false, then the block of code inside the else is

executed.

if ... else if ... else statement

The if ... else if ... else statement has the following syntax:

Lab 3 29

CPPL Statements in C

if (expression1) {
statement(s) to be executed if the expression1 is true;

}
else if (expression2) {

statement(s) to be executed if the expression1 is false and the expression2 is true;
}
else if (expression3) {

statement(s) to be executed if the expression1 and the expression2 are false and the expression3 is true;
}
....
else {

statement(s) to be executed if all the expressions are false;
}

This statement has the following effect:

– Expression1 is evaluated.
– If the result of the evaluation is true, then the block of code inside the if is executed.
– If the result of the evaluation is false, then expression2 is evaluated.
– If the result of the evaluation is true, then the block of code inside the first else if

is executed.
– If the result of the evaluation is false, then expression3 is evaluated.
– If the result of the evaluation is true, then the block of code inside the second else

if is executed.
–
– If the result of the evaluation is false, then the block of code inside the else is

executed.

Listing 3.2 presents the usage of the if ... else and if ... else if ... else statements.
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t grade = 0 ;
4

5 p r i n t f ("Enter the number o f po in t s obta ined at the exam : ") ;
6 s can f ("%d" , &grade) ;
7 i f ((grade >= 0) && (grade <= 10)) {
8 i f (grade >= 9)
9 p r i n t f ("Passed with A.\ n") ;

10 e l s e i f (grade >= 8)
11 p r i n t f ("Passed with B. \ n") ;
12 e l s e i f (grade >= 7)
13 p r i n t f ("Passed with C.\ n") ;
14 e l s e i f (grade >= 6)
15 p r i n t f ("Passed with D.\ n") ;
16 e l s e i f (grade >= 5)
17 p r i n t f ("Passed with E. \ n") ;
18 e l s e
19 p r i n t f (" Fa i l ed . \ n") ;
20 }
21 e l s e {
22 p r i n t f ("You entered an i n v a l i d grade ! ") ;
23 }
24 re turn 0 ;
25 }

Listing 3.2: Program L3Ex2.c

Lab 3 30

CPPL Statements in C

switch statement

The switch statement can be used instead of the if ... else if ... else statement. It
is often faster than nested if ... else.

The switch statement has the following syntax:

switch (expression) {
case constant1:

statement(s) to be executed if the result of the expression is equal to constant1;
break; /* optional */

case constant2:
statement(s) to be executed if the result of the expression is equal to constant2;
break; /* optional */

....
default: /* optional */

statement(s) to be executed if the result of the expression doesn’t match any constant;
}

This statement has the following effect [1]:

– The expression is evaluated.
– The result of the evaluation is compared with constant1, constant2,
– If the result is equal to a constant, then the block of code after the corresponding

case label is executed.
– If the result doesn’t match any constant, then the block of code after the default

label is executed.

The default branch is optional. If it is missing and the value of the expression doesn’t
match any constant, the switch statement has no effect. Also, the break statement is
optional. If it is missing, all the statements that follow are executed, until either a break
is met or the switch statement ends. The constants must be the same data type as the
expression in the switch. The data types allowed are integer and character.

Listing 3.3 presents the usage of the switch statement.
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t grade = 0 ;
4

5 p r i n t f ("Enter one o f the f o l l ow i ng A, a , B, b , C, c , D, d , E, e , F , f : ") ;
6 grade = getchar () ;
7 switch (grade) {
8 case ’ a ’ :
9 case ’A ’ : p r i n t f ("Grade in the f o l l ow i ng i n t e r v a l [9 , 1 0] . \ n") ;

10 break ;
11 case ’b ’ :
12 case ’B ’ : p r i n t f ("Grade in the f o l l ow i n g i n t e r v a l [8 , 9) . \ n") ;
13 break ;
14 case ’ c ’ :
15 case ’C ’ : p r i n t f ("Grade in the f o l l ow i n g i n t e r v a l [7 , 8) . \ n") ;
16 break ;
17 case ’d ’ :
18 case ’D ’ : p r i n t f ("Grade in the f o l l ow i n g i n t e r v a l [6 , 7) . \ n") ;
19 break ;
20 case ’ e ’ :
21 case ’E ’ : p r i n t f ("Grade in the f o l l ow i ng i n t e r v a l [5 , 6) . \ n") ;
22 break ;
23 case ’ f ’ :
24 case ’F ’ : p r i n t f ("Grade in the f o l l ow i n g i n t e r v a l [0 and 5) . Fa i l ed . \ n") ;
25 break ;

Lab 3 31

CPPL Statements in C

26 de f au l t : p r i n t f ("You entered an i n v a l i d grade ! ") ;
27 }
28 re turn 0 ;
29 }

Listing 3.3: Program L3Ex3.c

3.2.4 Loop (iteration) statements

The C language provides the following types of loop statements:

– for statement – executes one or more statements multiple times using a loop variable;
– while statement – repeats one or more statements while a given expression is true

and evaluates the expression before executing the loop body;
– do ... while statement – repeats one or more statements while a given expression

is true and evaluates the expression at the end of the loop body.

for statement

The for statement has the following syntax:

for (expression1; expression2; expression3) {
statement(s) to be executed;

}

This statement has the following effect:

– Expression1 is executed first and only a single time. This step allows programmers
to define and initialize any loop control variables.

– Expression2 is evaluated.
– If the result of the evaluation is true, then the block of code inside the for is executed.
– If the result of the evaluation is false, then the first statement after the end of the

for is executed.
– After the block of code inside the for executes, expression3 is executed. This step

allows programmers to update any loop control variables.
– Expression2 is evaluated again. If it is true, the loop executes and the process

continues to repeat. After the expression2 becomes false, the for ends.

expression1, expression2 and expression3 may be missing, but the presence of ; is
mandatory.

A loop turns into an infinite loop if the evaluation of expression2 is always true. Addi-
tionally, since none of the three expressions in the for statement are mandatory, an infinite
loop can be created by leaving expression2 empty.

Listing 3.4 presents the usage of the for statement.
1 #inc lude <s td i o . h>
2 #de f i n e MAX_SIZE 100
3 i n t main () {
4 f l o a t numbers [MAX_SIZE] = {0} , average = 0 .0 f , sum = 0.0 f ;
5 i n t i = 0 , no_numbers = 0 ;
6

7 p r i n t f ("Compute the a r i thmet i c average value o f n (<%d) r e a l numbers . \ n" ,
MAX_SIZE) ;

8 p r i n t f (" Input the number o f r e a l numbers , n = ") ;
9 s can f ("%d" , &no_numbers) ;

10 i f (no_numbers > 0 && no_numbers <= MAX_SIZE) {

Lab 3 32

CPPL Statements in C

11 p r i n t f (" Input the r e a l numbers : \ n") ;
12 f o r (i =0, sum=0; i < no_numbers ; i++) {
13 p r i n t f ("numbers [%3d] = " , i + 1) ;
14 s can f ("%f " , &numbers [i]) ;
15 sum += numbers [i] ;
16 }
17 average = sum / no_numbers ;
18 p r i n t f ("\nAVERAGE = %.2 f \n" , average) ;
19 }
20 e l s e {
21 p r i n t f ("The number o f r e a l numbers i s i n v a l i d . ") ;
22 }
23 re turn 0 ;
24 }

Listing 3.4: Program L3Ex4.c

while statement

The while statement has the following syntax:

while (expression) {
statement(s) to be executed;

}

This statement has the following effect [1]:

– The expression is evaluated.
– If the result of the evaluation is true, then the block of code inside the while is

executed and the expression is evaluated again.
– If the result of the evaluation is false, then the first statement after the end of the

while is executed.

It is possible that a while statement might not execute at all. When the expression
is evaluated as false from the beginning, the block of code within the while is skipped
and the first statement after the while is executed. The block of code within a while
statement has to contain some statements which change the value of the variables from
the expression.

Listing 3.5 presents the usage of the while statement.
1 #inc lude <s td i o . h>
2 #de f i n e PERIOD ’ . ’
3 i n t main () {
4 i n t cha rac t e r = 0 , no_character = 0 ;
5

6 p r i n t f ("Computes how many times the cha ra c t e r s other than s i n g l e or double
quotes appear in an input sentence . Type . to end the sentence . \ n") ;

7 p r i n t f (" Input sentence : ") ;
8 whi le ((cha rac t e r = getchar ()) != PERIOD) {
9 i f ((cha rac t e r != ’ " ’) && (charac t e r != ’ \ ’ ’))

10 no_character++;
11 }
12 p r i n t f ("There are %d non quote cha ra c t e r s . \ n" , no_character) ;
13 re turn 0 ;
14 }

Listing 3.5: Program L3Ex5.c

Lab 3 33

CPPL Statements in C

do ... while statement

The do ... while statement has the following syntax:

do {
statement(s) to be executed;

} while (expression);

This statement has the following effect [1]:

– The block of code inside the do ... while is executed.
– The expression is evaluated.
– If the result of the evaluation is true, then the block of code inside the do ... while

is executed and the expression is evaluated again.
– If the result of the evaluation is false, then the first statement after the end of the

do ... while is executed.

Unlike for and while loop statements, which evaluate the expression at the beginning
of the loop, the do...while statement verifies its expression at the end of the loop. This
feature guarantees that do...while is executed at least one time.

Listing 3.6 presents the usage of the do ... while statement.
1 #inc lude <s td i o . h>
2 #de f i n e PERIOD ’ . ’
3 i n t main () {
4 i n t cha rac t e r = 0 , no_character = 0 ;
5

6 p r i n t f ("Computes how many times the cha ra c t e r s other than s i n g l e or double
quotes appear in an input sentence . Type . to end the sentence . \ n") ;

7 p r i n t f (" Input sentence : ") ;
8 do {
9 i f ((cha rac t e r != ’ " ’) && (charac t e r != ’ \ ’ ’))

10 no_character ++;
11 } whi l e ((cha rac t e r = getchar ()) != PERIOD) ;
12 p r i n t f ("There are %d non quote cha ra c t e r s . \ n" , no_character − 1) ;
13 re turn 0 ;
14 }

Listing 3.6: Program L3Ex6.c

3.2.5 Jump statements

C language provides the following types of jump statements:

– break statement – terminates the loop or switch statements and transfers execution
to the statement that follows the loop or switch;

– continue statement – causes the loop to skip the remaining statements in its body
and immediately retests the loop expression before reiterating;

– goto statement – redirects the execution to a labeled statement;
– return statement – returns from a function.

break statement

The break statement has the following syntax:

break;

Lab 3 34

CPPL Statements in C

The break statement is used in a block of code inside loop statements or in the switch
statement.

The break statement has the following effect: when it is encountered within a loop,
the loop is immediately terminated, and the execution continues with the first statement
following the loop.

Listing 3.7 presents the usage of the break statement.
1 #inc lude <s td i o . h>
2 #de f i n e MAX_DIGIT 9
3 i n t main () {
4 i n t sum = 0 , d i g i t = 0 ;
5

6 p r i n t f ("Computes the sum of the d i g i t s from 0 to %d .\ n" , MAX_DIGIT) ;
7 whi le (1) {
8 i f (d i g i t > MAX_DIGIT)
9 break ;

10 sum += d i g i t ;
11 d i g i t++;
12 }
13 p r i n t f ("The sum of the d i g i t s i s %d . " , sum) ;
14 re turn 0 ;
15 }

Listing 3.7: Program L3Ex7.c

continue statement

The continue statement has the following syntax:

continue;

This statement is used only in a block of code inside the loop statements.
The continue statement has the following effect: when it is encountered within a loop,

it forces the next iteration iteration to occur, bypassing any code in between.
Listing 3.8 presents the usage of the continue statement.

1 #inc lude <s td i o . h>
2 #de f i n e MAX 3
3 i n t main () {
4 double number = 0 . 0 , sum = 0 . 0 ;
5 i n t i = 0 ;
6

7 p r i n t f ("Computes sum of %d r e a l numbers . Negative numbers are skipped from
c a l c u l a t i o n . \ n" , MAX) ;

8 f o r (i = 0 ; i < MAX; i++) {
9 p r i n t f ("Enter the n%d r e a l number : " , i + 1) ;

10 s can f ("%l f " , &number) ;
11 i f (number < 0)
12 cont inue ;
13 sum += number ;
14 }
15 p r i n t f ("The sum of the p o s i t i v e numbers i s %.2 l f . \ n" , sum) ;
16 re turn 0 ;
17 }

Listing 3.8: Program L3Ex8.c

Lab 3 35

CPPL Statements in C

goto statement

The goto statement has the following syntax:

goto label;
....
label: statement;

This statement enables an unconditional jump from the goto keyword to a labeled
statement within the same function. The use of goto statement is strongly discouraged
as it complicates the ability to follow the control flow of a program, making it harder to
understand and modify.

return statement

The return statement has the following syntax:

return expression;

This statement ends the execution of a function and returns an expression from a
function. The expression has the same data type as the return data type of the function.
If the function return data type is void, the function does not return an expression.

3.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. What will be the output of the program?
1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t number = 100 ;
4

5 switch (number) {
6 case 100 :
7 p r i n t f ("Case 1") ;
8 case 200 :
9 p r i n t f ("Case 2") ;

10 break ;
11 case number :
12 p r i n t f ("Case 3") ;
13 break ;
14 }
15 re turn 0 ;
16 }

A. Case 1
B. Case 1Case 2
C. Error: no default value is specified
D. Error: case label does not reduce to an integer constant

Lab 3 36

CPPL Statements in C

3. What will be the output of the program?
1 #inc lude<s td i o . h>
2 i n t main () {
3 unsigned shor t i n t i = 0 ;
4

5 f o r (i <= 10 && i >= −1; ++i ; i > 0)
6 p r i n t f ("%u " , i) ;
7 re turn 0 ;
8 }

A. 1 2 3 4 5 6 7 8 9 10 ... 65535
B. Expression syntax error
C. No output
D. 1 2 3 4 5 6 7 8 9 10

4. What does the following program print?
1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t a = 1 , b = 0 ;
4

5 whi le (a <= 5) {
6 b = 1 ;
7 whi le (b <= a) {
8 p r i n t f ("%d" , a) ;
9 b = b + 1 ;

10 }
11 p r i n t f ("\n") ;
12 a = a + 1 ;
13 }
14 re turn 0 ;
15 }

5. What will be the output of the program?
1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t a = 1 ;
4

5 whi le (a <= 10) {
6 p r i n t f ("%d " , a) ;
7 i f (a > 3)
8 break ;
9 a++;

10 }
11 p r i n t f ("%d" , a + 10) ;
12 re turn 0 ;
13 }

A. 1 2 3 4 14
B. 1 2 3 3 13
C. 1 2 3 3 14
D. 1 2 3 3 10

Lab 3 37

CPPL Statements in C

6. What will be the output of the program?
1 #inc lude<s td i o . h>
2 i n t main () {
3 i n t a = 1 ;
4

5 whi le (a <= 10) {
6 p r i n t f ("%d " , a) ;
7 i f (a > 3 && a < 8)
8 cont inue ;
9 a++;

10 }
11 p r i n t f ("%d" , a + 10) ;
12 re turn 0 ;
13 }

A. 1 2 3 4 5 6 infinite
B. 1 2 3 4 5 15
C. 1 2 3 4 4 4 infinite
D. 1 2 3 3 13

7. Write a C program which reads a real value for n and then computes the value for
the function:

f(n) =


n2 + 3n+ 5 if n < −3

−3 if n = −3

n2 − 10n+ 2 if n > −3

8. Write a C program to display 100 times a special character inserted by the user
from the keyboard. After every ten special characters, the program should output a
newline character.

9. Write a C program to display an unsigned integer in binary format using bitwise
operators. Use the bitwise AND operator to combine the value of the unsigned
integer with the 1 « 31 mask, and also a shift operator to modify the value of the
mask.

10. Write a C program that reads from the keyboard integer values until 0 is entered.
Once the input is complete, the program calculates and displays the total count of
even integers (excluding 0) entered, the average of the even integers, the total count
of odd integers entered, and the average of the odd integers. Analyze the cases when
only even or odd numbers are read from the keyboard, or when 0 is entered from the
beginning.

11. Write a C program that presents a menu with options for addition (+), subtraction
(-), multiplication (*) or division (/). After the user makes a selection, the program
prompts for two real numbers and performs the chosen operation. The program
should allow the user to repeat the operation until the ’q’ key is pressed.

12. Write a C program to sort an array of integer values in descending order. Use the
"bubble sort" sorting algorithm [2] (the algorithm repeatedly compares two adjacent
elements of the array and swaps them if they are not arranged in descending order).

Lab 3 38

CPPL Statements in C

3.4 References

1. Brian Kernighan, Dennis Ritchie, The C Programming Language, 1988, Second edi-
tion, Prentice Hall, ISBN: 0-13-110370-9.

2. Soni Upadhyay, Bubble Sort Algorithm: Overview, Time Complexity, Pseudocode
and More, https://www.simplilearn.com/tutorials/data-structure-tutoria
l/bubble-sort-algorithm, Accessed in September 2024.

Lab 3 39

https://www.simplilearn.com/tutorials/data-structure-tutorial/bubble-sort-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/bubble-sort-algorithm

CPPL

Laboratory paper 4

Pointers in C

40

CPPL Pointers in C

4.1 Overview

– Presentation of pointers in C
– Use of pointers within simple C programs
– Work time: 2 hours

4.2 Theoretical Considerations

A pointer is a derived data type in C that holds an address of a memory location. In
other words, it points to the location of a block of memory that in turn contains actual
data of interest.

A variable of type pointer holds the address of another variable. Therefore, a variable
name directly references a value, while a pointer indirectly references a value [1]. The way
of referencing a value through a pointer is known as indirection.

The purpose of pointers is to allow the programmers to manually, directly access a
block of memory. Pointers are used predominately for strings and structs.

4.2.1 Pointer variable definition

The following syntax is used to define a pointer variable in C:

data_type *identifier;

where:

– data_type is the type of the pointer (pointer to a data type);
– * is the symbol used to define a pointer (in this case * is not the dereference operator);
– identifier is the name of the pointer.

Several definitions of pointer variables are presented below.
1 i n t ∗ int_ptr ; //a po in t e r to an i n t e g e r
2 char ∗ char_ptr ; //a po in t e r to a charac t e r

4.2.2 Pointer variable initialization (assignment)

The following syntaxes are used to initialize a variable of type pointer or to assign a
value to this type of variable:

identifier = value;
data_type *identifier = value;

where:

– value is the address (location in memory) of a variable. The reference operator (&)
returns the address of a variable.

Several initializations (assignments) of pointer variables are presented below.
1 i n t var1 = 5 ;
2 i n t ∗ int_ptr = NULL;
3

4 int_ptr = &var1 ; // int_ptr takes the address o f i n t e g e r v a r i a b l e var1
5

6 char var2 = ’A ’ ;
7 char ∗ char_ptr = &var2 ; // char_ptr takes the address o f cha rac t e r v a r i a b l e
8 // var2

Lab 4 41

CPPL Pointers in C

4.2.3 Dereferencing a pointer

Accessing the value that a pointer points to is called dereferencing a pointer. The
dereference operator (*) returns the value of the variable to which its operand points [2].
So, it is used to dereference a pointer. For example ptr is the address of a variable, whereas
*ptr is the value of the variable that ptr points to.

Listing 4.1 presents an example of dereferencing a pointer and also highlights the fact
that & and * operators are complements of each other.

1 #inc lude <s td i o . h>
2

3 i n t main () {
4 i n t var1 = 1025 ;
5 i n t ∗ int_ptr = &var1 ;
6

7 p r i n t f ("Address o f var1 : %p\n" , &var1) ;
8 p r i n t f ("Value o f int_ptr : %p\n" , int_ptr) ;
9 p r i n t f ("Address o f int_ptr : %p\n" , &int_ptr) ;

10 p r i n t f ("Value o f var1 : %d\n" , ∗ int_ptr) ;
11 p r i n t f ("Value o f ∗ int_ptr : %d\n" , ∗ int_ptr) ;
12 p r i n t f ("Value o f &∗int_ptr : %p and o f ∗&int_ptr : %p\n" , &∗int_ptr , ∗&

int_ptr) ;
13 re turn 0 ;
14 }

Listing 4.1: Program L4Ex1.c

Figure 4.1 presents graphically what happens in the computer memory when the first
two statements from Listing 4.1 are executed. The value of the pointer is represented in
binary in computer memory using 8 bytes if a 64-bit operating system is used.

Figure 4.1: Memory representation of a pointer to integer definition and initialization (a pointer is
represented on 8 bytes if a 64-bit machine is used, otherwise it requires only 4 bytes). var1 integer
is represented in little endian format.

Lab 4 42

CPPL Pointers in C

4.2.4 Pointer to void

A pointer to void is used when a pointer must not be bound to any data type. The
main reason for using it is the re-usability of the pointer variable.

The following syntax is used to define a pointer to void in C:

void *identifier;

A pointer to void cannot be dereferenced. However, using the cast operator a pointer
to void can be dereferenced (see the following syntax). Void pointers are of great use when
dynamic allocation of the memory is performed.

*(data_type *)identifier

An example of a pointer to void definition and initialization and the way in which it
can be dereferenced are presented below.

1 i n t integer_var ;
2 f l o a t f l oat_var ;
3 void ∗ ptr = NULL;
4

5 ptr = &integer_var ;
6 ptr = &f loat_var ;
7 ∗ ptr = 7 .0 f ; // Error −− ptr i s a po in t e r to void and i t cannot be
8 // de r e f e r enc ed
9 ∗(f l o a t ∗) ptr = 7 .0 f ; // Correct −− a type ca s t i s r equ i r ed

4.2.5 Constant pointers

The const keyword informs the compiler that the value of a variable should not be
modified. Using const, two types of pointer variables can be defined: pointer to a constant
value and constant pointer. These pointers must be initialized when they are defined.

A pointer to a constant value can be defined using the following syntaxes:

data_type const *identifier = value;
const data_type *identifier = value;

A pointer to a constant value can be changed to point to any value of the appropriate
data type, but the value it points to cannot be modified [2]. For example, a pointer to
a constant value can be used as an array argument of a function that will process each
array’s element without modifying its value.

1 i n t num1 = 20 , num2 = 5 ;
2 i n t const ∗ ptr = &num1 ; // De f i n i t i o n and i n i t i a l i z a t i o n o f a po in t e r to
3 //a constant i n t e g e r value (read−only ∗ ptr)
4 ∗ ptr = 20 ; // Error − ∗ptr i s const (cannot modify a const)
5 ptr++; ptr = &num2 ; // Correct − ptr i s not const

A constant pointer can be defined using the following syntax:

data_type *const identifier = value;

A constant pointer always points to the same memory location, and the value at that
location can be changed through the pointer [2]. An array name is a constant pointer to the
beginning of the array. All the values of the array’s element can be accessed and modified

Lab 4 43

CPPL Pointers in C

by using the array name along with array subscripting. For example, a constant pointer
can be passed as an array argument to a function that accesses the array’s elements using
only the array subscript notation.

1 i n t num1 = 20 , num2 = 5 ;
2 i n t ∗ const ptr = &num1 ; // De f i n i t i o n and i n i t i a l i z a t i o n o f a constant
3 // po in t e r to an i n t e g e r (read−only va r i ab l e ptr)
4 ∗ ptr = 20 ; // Correct − ∗ ptr i s not const
5 ptr++; ptr = &num2 ; // Error − ptr i s const (cannot a s s i gn new address)

4.2.6 Pointer arithmetic

The pointer variables can be used as operands in arithmetic, assignment and comparison
expressions.

The next set of arithmetic and/or assignment operations may be performed [2]:

– An integer may be added to a pointer (+ or +=);
– An integer may be subtracted from a pointer (- or -=);
– A pointer may be incremented (++) or decremented (−−);
– One pointer may be subtracted from another.

Pointer variables can be compared using the C relational operators (==, !=, <, <=,
>, >=). Comparisons of pointer variables evaluate the addresses contained within those
pointer variables. A typical application of comparing pointer variables is to check if a
pointer is NULL.

When an integer n is added/subtracted to/from a pointer ptr, the value of the pointer
is increased/decreased with n * the number of bytes required to store a data item of the
data type of the pointer. The following formulas are used:

ptr + n equivalent to ptr + n ∗ sizeof(ptr_data_type)
ptr+ = n equivalent to ptr = ptr + n ∗ sizeof(ptr_data_type)
ptr − n equivalent to ptr − n ∗ sizeof(ptr_data_type)
ptr− = n equivalent to ptr = ptr − n ∗ sizeof(ptr_data_type)

When a pointer is incremented/decremented by one, the value of the pointer is in-
creased/decreased with the number of bytes required to store a data item of the data type
of the pointer. The following formulas are used:

ptr ++ or ++ ptr equivalent to ptr + sizeof(ptr_data_type)
ptr −− or −− ptr equivalent to ptr − sizeof(ptr_data_type)

When one pointer ptr2 is subtracted from another pointer ptr1, the result is the number
of bytes between the two addresses.

no = ptr1− ptr2, where ptr1 > ptr2

The expression ∗++ptr increments ptr to point to the next address and then retrieves
the value from the updated address.

The expression ++ ∗ptr takes the value indirectly referenced by ptr and increments it.
Pointer arithmetic is not meaningful unless it is applied to an array. It cannot be

presumed that two or more variables of the same data type are stored contiguously in
memory unless they are consecutive elements of an array.

Lab 4 44

CPPL Pointers in C

4.2.7 Pointers and arrays

An array name can be considered a constant pointer to its first element and cannot be
changed during execution. Figure 4.2 presents the memory representation of an array of
integers definition and initialization.

Pointers can be used to carry out any operation that involves array subscripting. List-
ing 4.2 exemplifies four methods to refer to one dimensional array elements: array sub-
scripting, array offset, pointer subscripting, and pointer offset.

Figure 4.2: Memory representation of an array of integers definition and initialization

1 #inc lude <s td i o . h>
2

3 i n t main () {
4 i n t array [5] = {1 , 2 , 3 , 4 , 5} ; /∗ d e f i n e and i n i t i a l i z e array ∗/
5 i n t ∗ array_ptr = array ; /∗ d e f i n e and i n i t i a l i z e array_ptr to
6 point to the f i r s t array element ∗/
7 /∗ i n t ∗ array_ptr = &array [0] ; equ iva l en t to the d e f i n i t i o n from the

prev ious l i n e ∗/
8 i n t i = 0 ;
9 i n t o f f s e t = 0 ;

10

11 /∗ output array us ing array sub s c r i p t notat ion ∗/
12 p r i n t f ("Array pr in ted with : \ nArray sub s c r i p t notat ion \n") ;
13 f o r (i = 0 ; i < 5 ; i++) {
14 p r i n t f (" array [%d] = %d\n" , i , array [i]) ;
15 }
16

17 /∗ output array us ing array o f f s e t notat ion ∗/
18 p r i n t f ("\nArray o f f s e t notat ion \n") ;
19 f o r (o f f s e t = 0 ; o f f s e t < 5 ; o f f s e t++) {
20 p r i n t f (" ∗(array + %d) = %d\n" , o f f s e t , ∗(array + o f f s e t)) ;
21 }
22

23 /∗ output array us ing po in t e r s ub s c r i p t notat ion ∗/
24 p r i n t f ("\ nPointer sub s c r i p t notat ion \n") ;
25 f o r (i = 0 ; i < 5 ; i++) {
26 p r i n t f (" array_ptr [%d] = %d\n" , i , array_ptr [i]) ;
27 }
28

29 /∗ output array us ing po in t e r o f f s e t notat ion ∗/
30 p r i n t f ("\ nPointer o f f s e t notat ion \n") ;

Lab 4 45

CPPL Pointers in C

31 f o r (o f f s e t = 0 ; o f f s e t < 5 ; o f f s e t++) {
32 p r i n t f (" ∗(array_ptr + %d) = %d\n" , o f f s e t , ∗(array_ptr + o f f s e t)) ;
33 }
34 re turn 0 ;
35 }

Listing 4.2: Program L4Ex2.c

Additionally, the previous example demonstrates the definition and use of a pointer
which points to the first element of an array (array_ptr). Furthermore, a pointer that
points to the whole array can be defined using the following syntax [3]:

data_type (*identifier)[integer_constant];

where:

– data_type is the data type of the pointer;
– identifier is the name of the pointer to an array;
– integer_constant is the size of the array to which the pointer points to.

This type of pointer is useful when multidimensional arrays are used. Listing 4.3 shows
the difference between a pointer that points to the first element of an array and a pointer
that points to the entire array.

1 #inc lude<s td i o . h>
2

3 i n t main () {
4 i n t array [2] [5] = {{1 , 2 , 3 , 4 , 5} ,
5 {6 , 7 , 8 , 9 , 10}} ; /∗ d e f i n e and i n i t i a l i z e array ∗/
6 i n t (∗ ptr) [5] = array ; /∗ d e f i n e and i n i t i a l i z e ptr as a po in t e r to
7 array ∗/
8 i n t ∗p = array ; /∗ d e f i n e and i n i t i a l i z e p to po int to the f i r s t
9 element o f array ∗/

10

11 p r i n t f ("p = %p , ptr = %p\n" , p , ptr) ;
12 p r i n t f (" array [0] [0]=%d , array [0]=%p , array [0] [0]=%d\n" , ∗p , ∗ptr , ∗∗ ptr) ;
13 p++; /∗ p = p + 4 bytes (the s i z e o f an element o f the array)
14 −> po in t s to the array [0] [1] e lement o f the array ∗/
15 ptr++; /∗ ptr = ptr + 20 bytes (the e n t i r e s i z e o f array ’ s row)
16 −> po in t s to the next row ∗/
17 p r i n t f ("p = %p , ptr = %p\n" , p , ptr) ;
18 p r i n t f (" array [0] [1]=%d , array [1]=%p , array [1] [0]=%d\n" , ∗p , ∗ptr , ∗∗ ptr) ;
19 re turn 0 ;
20 }

Listing 4.3: Program L4Ex3.c

4.2.8 Array of pointers

An array of pointers stores addresses of more than one variable into a single pointer [3].
The following syntax is used to define an array of pointers in C:

data_type *identifier[integer_constant];

where:

– data_type is the data type of the pointers within the array;
– identifier is the name of the array of pointers;
– integer_constant is the size of the array of pointers.

Lab 4 46

CPPL Pointers in C

A typical application of an array of pointers is to create an array of strings (a string
is an array of characters). Figure 4.3 presents the memory representation of an array of
two strings definition and initialization. An array of pointers containing two pointers, each
of them pointing to a character, is used. Each pointer of the array points to the first
character of a string. The value of the pointer is represented in binary using 8 bytes if a
64-bit machine is used. Each character is represented in binary using the ASCII (American
Standard Code for Information Interchange) Code (i.e., ’c’ -> 01100011).

Figure 4.3: Memory representation of an array of two arrays of characters (strings) definition and
initialization

Listing 4.4 and Listing 4.5 show methods to refer to array elements: array subscripting,
and respectively array offset. These notations can be used also when dealing with two
dimensional arrays of any data type.

1 #inc lude <s td i o . h>
2

3 i n t main () {
4 char ∗ s t r i n g [2] = {"computer" , "programming" } ;
5 i n t i = 0 ;
6 i n t j = 0 ;
7

8 p r i n t f ("&s t r i n g [0] = %p .\ n" , &s t r i n g [0]) ;
9 p r i n t f ("&s t r i n g [1] = %p .\ n" , &s t r i n g [1]) ;

10 p r i n t f (" s t r i n g [0] = %p .\ n" , s t r i n g [0]) ;
11 p r i n t f (" s t r i n g [1] = %p .\ n" , s t r i n g [1]) ;
12

13 /∗ output array us ing array sub s c r i p t notat ion ∗/
14 p r i n t f (" Pointer sub s c r i p t notat ion : \ n") ;

Lab 4 47

CPPL Pointers in C

15 f o r (i = 0 ; i < 2 ; i++){
16 p r i n t f (" St r ing s t a r t ed at s t r i n g [%d] i s %s . \ n" , i , s t r i n g [i]) ;
17 f o r (j = 0 ; j < s t r l e n (s t r i n g [i]) ; j++)
18 p r i n t f (" s t r i n g [%d][%d] = %c at address &s t r i n g [%d][%d] = %p .\ n" , i , j ,

s t r i n g [i] [j] , i , j , &s t r i n g [i] [j]) ;
19 }
20 re turn 0 ;
21 }

Listing 4.4: Program L4Ex4.c

1 #inc lude <s td i o . h>
2

3 i n t main () {
4 char ∗ s t r i n g [2] = {"computer" , "programming" } ;
5 i n t i = 0 ;
6 i n t j = 0 ;
7

8 p r i n t f (" s t r i n g + 0 = %p .\ n" , s t r i n g + 0) ;
9 p r i n t f (" s t r i n g + 1 = %p .\ n" , s t r i n g + 1) ;

10 p r i n t f (" ∗(s t r i n g + 0) = %p .\ n" , ∗(s t r i n g + 0)) ;
11 p r i n t f (" ∗(s t r i n g + 1) = %p .\ n" , ∗(s t r i n g + 1)) ;
12

13 /∗ output array us ing array o f f s e t notat ion ∗/
14 p r i n t f ("\ nPointer o f f s e t notat ion \n") ;
15 f o r (i = 0 ; i < 2 ; i++){
16 p r i n t f (" St r ing s t a r t ed at ∗(s t r i n g + %d) i s %s . \ n" , i , ∗(s t r i n g + i)) ;
17 f o r (j = 0 ; j < s t r l e n (∗ (s t r i n g + i)) ; j++)
18 p r i n t f (" ∗(∗(s t r i n g + %d) + %d) i s %c at address ∗(s t r i n g + %d) + %d =

%p .\ n" , i , j , ∗ (∗(s t r i n g + i) + j) , i , j , ∗(s t r i n g + i) + j) ;
19 }
20 re turn 0 ;
21 }

Listing 4.5: Program L4Ex5.c

4.2.9 Pointer to pointer

A pointer to a pointer can be used for multiple indirection or to create a chain of
pointers. When a pointer to a pointer is defined, the first pointer holds the address of
the second pointer, which in turn points to the location containing the actual value. The
following syntax is used to define pointer to a pointer in C:

data_type **identifier;

Listing 4.6 presents a simple example of using a pointer to a pointer in C.
1 #inc lude <s td i o . h>
2

3 i n t main () {
4 i n t number = 5 ;
5 i n t ∗ ptr = &number ;
6 i n t ∗∗ ptr_ptr = &ptr ;
7

8 p r i n t f ("Address o f ptr_ptr : %p\n" , &ptr_ptr) ;
9 p r i n t f ("Value o f ptr_ptr : %p\n" , ptr_ptr) ;

10 p r i n t f ("Address o f ptr : %p\n" , &ptr) ;
11 p r i n t f ("Value o f ptr : %p\n" , ptr) ;
12 p r i n t f ("Address o f number : %p\n" , &number) ;

Lab 4 48

CPPL Pointers in C

13 p r i n t f ("Value o f number : %d\n" , ∗∗ ptr_ptr) ;
14 p r i n t f ("Value o f number : %d\n" , ∗ ptr) ;
15 p r i n t f ("Value o f number : %d\n" , number) ;
16 re turn 0 ;
17 }

Listing 4.6: Program L4Ex6.c

4.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Identify the error in each of the following sequences of code assuming the next defi-
nitions:

1 i n t array [5] = {1 , 2 , 3 , 4 , 5} ;
2 void ∗void_ptr = array ;
3 i n t number = 0
4 i n t i = 0 ;
5 i n t ∗ array_ptr ;

a) ++array_ptr;
b) /* use array_ptr to get the first value of array */
number = array_ptr;
c) /* assign array element 3 (the value 4) to number */
number = *array_ptr[3];
d) /* print all the elements of array */
for(i = 0; i <= 5; i++) printf("%d ", array_ptr[i]);
e) /* assign the value pointed to by void_ptr to number */
number = *void_ptr;
f) ++array;

3. For each of the following, write a single statement to accomplish the indicated task.
Assume that x and y are variables of type double that have been defined, and that
x has been initialized to 10.00.
a) Define the variable double_ptr to be a pointer to a double.
b) Assign the address of variable x to pointer variable double_ptr.
c) Display the value that is pointed to by double_ptr.
d) Assign the value pointed to by double_ptr to variable y.
e) Display the value held by variable y.
f) Display the address of variable x. Use the %p format specifier.
g) Display the address stored in double_ptr. Use the %p format specifier. Is the
displayed value the same as the address of variable x?

4. Write a C program to display the reverse of a string (array of characters) using
pointers.

5. Write a C program to sort an array of integers in descending order using a pointer
that points to the first element of the array and the pointer offset notation. Use the
"bubble sort" sorting algorithm [4] (the algorithm repeatedly compares two adjacent
elements of the array and swaps them if they are not arranged in descending order).

Lab 4 49

CPPL Pointers in C

4.4 References

1. Paul Deitel, Harvey Deitel, C How to Program, 2022, Ninth edition, Pearson Educa-
tion, ISBN: 978-0-13-739839-3.

2. Richard M. Reese, Understanding and Using C Pointers, 2013, O’Reilly Media, Inc.,
ISBN: 978-1-44-934418-4.

3. Pointers in C Explained – They’re Not as Difficult as You Think, https://www.fr
eecodecamp.org/news/pointers-in-c-are-not-as-difficult-as-you-think/,
Accessed in September 2024.

4. Soni Upadhyay, Bubble Sort Algorithm: Overview, Time Complexity, Pseudocode
and More, https://www.simplilearn.com/tutorials/data-structure-tutoria
l/bubble-sort-algorithm, Accessed in September 2024.

Lab 4 50

https://www.freecodecamp.org/news/pointers-in-c-are-not-as-difficult-as-you-think/
https://www.freecodecamp.org/news/pointers-in-c-are-not-as-difficult-as-you-think/
https://www.simplilearn.com/tutorials/data-structure-tutorial/bubble-sort-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/bubble-sort-algorithm

CPPL

Laboratory paper 5

Functions in C

51

CPPL Functions in C

5.1 Overview

– Presentation of functions in C
– Use of functions within simple C programs
– Work time: 4 hours

5.2 Theoretical Considerations

A function is a component of a C program designed to perform a specific task.
Functions allow the programmers to modularize a program, to manage its complexity,

and also assure software reusability.
C programs are usually written by combining programmer-defined functions (functions

defined by the programmers) with built-in functions available in the C Standard Library.
Each C program has to contain the main function, which represents its entry-point.

Functions are invoked through function calls which specify the functions name and pro-
vide the necessary information (as arguments) that the called functions require to execute
their tasks.

5.2.1 Function definition

The following syntax is used to define a function in C:

return_value_data_type identifier(formal parameters list) {
//body of the function
local variables definition and initialization;
statement(s);

}

where:

– return_value_data_type is the data type of the result (default int);
– identifier is the name of the function;
– formal parameters list may contain:

– No parameters (syntax: return_value_data_type identifier() {...} or
syntax: return_value_data_type identifier(void) {...})

– One or more parameters, separated by commas and specified by:
data_type formal_parameter_identifier.

A formal parameter may be preceded by the const keyword. In this case its value
becomes constant in the function body (the parameter’s value is read only). Accordingly,
any attempt to alter the value of that parameter in the function body generates an error.

A function may contain arrays as its formal parameters.
If a formal parameter is an one dimensional array, it can be defined as:

– data_type formal_parameter_identifier[]
– data_type *formal_parameter_identifier

The two forms are equivalent. The subscript notation, formal_parameter_identifier[index],
can be used in the body of the function.

If a formal parameter is a two dimensional array, it can be defined as:

– data_type formal_parameter_identifier[][no_columns]
– data_type (*formal_parameter_identifier)[no_columns]

Lab 5 52

CPPL Functions in C

The two forms are equivalent. The following subscript notation can be used in the body
of the function, formal_parameter_identifier[row][column].

When an array formal parameter is prefixed with the const keyword, the values of
the array elements are treated as constants within the function body. Accordingly, any
attempt to change the value of an element of the array in the function body generates an
error.

Unlike char data type arrays, other types of array do not have a special terminator.
Therefore, it is recommended that the size of the array to be stated as a formal parameter,
so that the function processes the correct number of elements.

There are two categories of functions in C: functions which return a value and functions
which do not return a value. When a function returns a value, the last statement of the
body of the function is return expression;, where expression has the same data type as
the return_value_data_type of the function. When a function does not return a value,
return_value_data_type is replaced with void and the last statement from the body of
the function is return; which is optional because the function-ending right brace replaces
it.

Several functions definitions are presented below:
1 /∗ square func t i on d e f i n i t i o n − re tu rn s the square o f i t s parameter ∗/
2 i n t square (i n t y) {
3 re turn y ∗ y ; /∗ r e tu rn s square o f y as an i n t ∗/
4 }
5

6 /∗ cube_reference func t i on d e f i n i t i o n − does not re turn a value ∗/
7 void cube_reference (double ∗number_ptr) {
8 ∗number_ptr = pow(∗number_ptr , 3) ;
9 }

10

11 /∗ print_mult_array func t i on d e f i n i t i o n − does not re turn a value ∗/
12 void print_mult_array (i n t s i z e , i n t ∗ptr , i n t va lue) {
13 i n t i = 0 ;
14 f o r (i = 0 ; i < s i z e ; i++) {
15 p r i n t f ("\ t %d" , ∗ ptr ∗ value) ;
16 ptr++;
17 }
18 }
19

20 /∗ print_matrix func t i on d e f i n i t i o n − does not re turn a value ∗/
21 void print_matrix (i n t rows , i n t columns , const i n t (∗ ptr) [columns]) {
22 i n t i = 0 , j = 0 ;
23 f o r (i = 0 ; i < rows ; i++) {
24 f o r (j = 0 ; j < columns ; j++)
25 p r i n t f ("\ t %d" , ptr [i] [j]) ;
26 p r i n t f ("\n") ;
27 }
28 }

5.2.2 Function declaration

A function declaration informs the compiler about the data type that the function
returns, as well as the data types of its parameters provided in the order they are ex-
pected. The compiler uses functions declarations to validate functions calls if the functions
definitions are placed after their calls or when they are located in different source files.

The function prototype is used to declare a function as the following syntax shows:

Lab 5 53

CPPL Functions in C

return_value_data_type identifier(formal parameters list);

It is a good programming practice to specify function prototypes for all the required
functions at the beginning of a source file or to include a header file containing these
prototypes.

The declarations of the previous defined functions follow:
1 i n t square (i n t y) ; // square func t i on prototype
2 void cube_reference (double ∗) ; // cube_reference func t i on prototype
3 void print_mult_array (int , i n t ∗ , i n t) ; // print_mult_array func t i on prototype
4 void print_matrix (int , int , const i n t (∗) [COLUMNS]) ; // print_matrix func t i on
5 // prototype

The formal parameter names (not their data types!) can be missing.

5.2.3 Function call

A function has to be called (called function) by another function (caller) to perform its
defined task. The following syntax is used to call a function which returns a value:

variable_identifier = identifier(effective parameters list);
identifier(effective parameters list);

The following syntax is used to call a function which does not return a value:

identifier(effective parameters list);

In both the above cases, the effective parameters (arguments) replace the formal pa-
rameters. The correspondence between formal and effective parameters is positional.

It is recommended that the data types of the formal parameters and of the effective
parameters coincide. If this requirement is not satisfied, in C, the data type of the ef-
fective parameter is automatically converted to the data type of its corresponding formal
parameter.

Several examples of the previous defined functions calls are presented below:
1 p r i n t f ("%d" , square (3)) ; // square func t i on c a l l s
2 i n t_var i ab l e = square (4) ;
3

4 cube_reference (&number) ; // cube_reference func t i on c a l l
5

6 print_mult_array (SIZE , array , 2) ; // print_mult_array func t i on c a l l
7

8 print_matrix (ROWS, COLUMNS, matrix) ; // print_matrix func t i on c a l l

The passing of the effective parameters can be done:

– By value (call by value);
– By reference (call by reference).

Call by value

When effective parameters are passed by value, copies of the arguments’ values are
created and passed to the called function [1]. The changes to the copies do not impact
the original values of the effective parameters in the caller. Call by value should be used
whenever the called function does not need to modify the original values of the caller’s
effective parameters.

Lab 5 54

CPPL Functions in C

Listing 5.1 presents the definition of a function that cubes a real number and its call
using call by value.

1 #inc lude <s td i o . h>
2 #inc lude <math . h>
3

4 double cube_value (double) ; /∗ cube_value func t i on prototype ∗/
5

6 i n t main () {
7 double number = 5 . 0 ;
8

9 p r i n t f ("The o r i g i n a l va lue o f number i s %.2 l f . \ n" , number) ;
10 number = cube_value (number) ; /∗ pass number by value to cube_value ∗/
11 p r i n t f ("The new value o f number i s %.2 l f . \ n" , number) ;
12 re turn 0 ;
13 }
14

15 /∗ c a l c u l a t e and return cube o f a double ∗/
16 double cube_value (double number) {
17 re turn pow(number , 3) ;
18 }

Listing 5.1: Program L5Ex1.c

Call by reference

When effective parameters are passed by reference, the caller allows the called function
to alter the original values of the effective parameters [1]. Call by reference should be
used only with trusted called functions that need to modify the original values of caller’s
effective parameters.

Call by reference is not supported in C, but it’s possible to simulate it by using reference
and dereference operators (call by value using pointers).

Listing 5.2 presents the definition of a function that cubes a real number and its call
using call by value through pointers.

1 #inc lude <s td i o . h>
2 #inc lude <math . h>
3

4 void cube_reference (double ∗) ; /∗ cube_reference func t i on prototype ∗/
5

6 i n t main () {
7 double number = 5 . 0 ;
8

9 p r i n t f ("The o r i g i n a l va lue o f number i s %.2 l f . \ n" , number) ;
10 cube_reference (&number) ; /∗ pass number by value us ing po in t e r to
11 cube_reference ∗/
12 p r i n t f ("The new value o f number i s %.2 l f . \ n" , number) ;
13 re turn 0 ;
14 }
15

16 /∗ c a l c u l a t e and return cube o f a double ∗/
17 void cube_reference (double ∗number_ptr) {
18 ∗number_ptr = pow(∗number_ptr , 3) ;
19 }

Listing 5.2: Program L5Ex2.c

Figure 5.1 and Figure 5.2 present graphically the programs from Listing 5.1 and List-
ing 5.2, respectively.

Lab 5 55

CPPL Functions in C

Figure 5.1: Analysis of Listing 5.1 – call by value (adapted from [1])

Lab 5 56

CPPL Functions in C

Figure 5.2: Analysis of Listing 5.2 – call by reference (adapted from [1])

Passing arrays to functions

The C programming language passes arrays to functions using call by reference (the
called functions can modify the original elements values of the callers’ arrays), using the
name of the array (without any brackets) [1]. The name of the array evaluates to the
address of the first element of the array.

Even if entire arrays are passed by reference, individual elements of an array are passed
using call by value exactly as scalar variables are [1]. To pass an array element to a function,
the subscripted name of the array element is used as an effective parameter (argument) in
the function call.

Listing 5.3 exemplifies how to pass arrays to functions.
1 #inc lude <s td i o . h>
2 #inc lude <math . h>
3 #de f i n e SIZE 3
4 #de f i n e ROWS 3
5 #de f i n e COLUMNS 3
6

7 void print_element (i n t) ;
8 void print_mult_array (int , i n t ∗ , i n t) ;
9 void print_matrix (int , int , const i n t (∗) [COLUMNS]) ;

10

Lab 5 57

CPPL Functions in C

11 i n t main () {
12 i n t array [SIZE] = {1 , 2 , 3} ;
13 i n t matrix [ROWS] [COLUMNS] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
14

15 p r i n t f ("The l a s t element o f the array : ") ;
16 print_element (array [SIZE − 1]) ; /∗ pass the l a s t array element to
17 print_element ∗/
18 p r i n t f ("The array e lements mu l t i p l i e d by 2 : \n") ;
19 print_mult_array (SIZE , array , 2) ; /∗ pass array to print_multi_array ∗/
20 p r i n t f ("\nThe matrix e lements : \ n") ;
21 print_matrix (ROWS, COLUMNS, matrix) ; /∗ pass matrix to print_matrix ∗/
22 re turn 0 ;
23 }
24

25 /∗ p r in t the value o f an element o f an array ∗/
26 void print_element (i n t element) {
27 p r i n t f ("%d\n" , element) ;
28 }
29

30 /∗ p r in t the va lue s o f the e lements o f an array mu l t i p l i e d by a value ∗/
31 void print_mult_array (i n t s i z e , i n t ∗ptr , i n t va lue) {
32 i n t i = 0 ;
33 f o r (i = 0 ; i < s i z e ; i++) {
34 p r i n t f ("\ t %d" , ∗ ptr ∗ value) ;
35 ptr++;
36 }
37 }
38

39 /∗ p r in t the va lue s o f the e lements o f a matrix ∗/
40 void print_matrix (i n t rows , i n t columns , const i n t (∗ ptr) [columns]) {
41 i n t i = 0 , j = 0 ;
42 f o r (i = 0 ; i < rows ; i++) {
43 f o r (j = 0 ; j < columns ; j++)
44 p r i n t f ("\ t %d" , ptr [i] [j]) ;
45 p r i n t f ("\n") ;
46 }
47 }

Listing 5.3: Program L5Ex3.c

5.2.4 Function pointers

A pointer to a function holds the starting address in memory of the code that carries
out the function’s task. The function name represents this address.

The following syntax is used to define a pointer to a function in C:

return_value_data_type (*identifier)(formal parameters list);

A pointer to a function can be used to call the function directly as the function name
or indirectly using the dereference operator.

Listing 5.4 presents the usage of a function pointer.
1 #inc lude<s td i o . h>
2

3 void pr int_int (i n t) ; /∗ pr int_int func t i on prototype ∗/
4

5 i n t main () {
6 void (∗ f_ptr) (i n t) ; /∗ d e f i n e f_ptr a po in t e r to a func t i on ∗/
7

Lab 5 58

CPPL Functions in C

8 f_ptr = &pr int_int ; /∗ i n i t i a l i z e f_ptr with the address o f pr int_int ∗/
9

10 /∗ c a l l pr int_int us ing the po in t e r to i t ∗/
11 f_ptr (2) ;
12 /∗ another way to c a l l pr int_int us ing the po in t e r to i t ∗/
13 (∗ f_ptr) (2) ;
14 re turn 0 ;
15 }
16

17 /∗ p r in t an i n t e g e r ∗/
18 void pr int_int (i n t x) {
19 p r i n t f ("%d\n" , x) ;
20 }

Listing 5.4: Program L5Ex4.c

Pointers to functions can be stored in arrays, assigned to other function pointers, passed
to other functions and returned from functions. A common application of function pointers
is in text-based, menu-driven programs [1], as Listing 5.5 exemplifies.

1 #inc lude<s td i o . h>
2

3 void fun_x (i n t x) ; /∗ fun_x func t i on prototype ∗/
4 void fun_y (i n t y) ; /∗ fun_y func t i on prototype ∗/
5 void fun_z (i n t z) ; /∗ fun_z func t i on prototype ∗/
6

7 i n t main () {
8 /∗ de f i n e and i n i t i a l i z e f_ptr an array o f 3 po i n t e r s to f unc t i on s that
9 each takes an i n t e g e r argument and re tu rn s void ∗/

10 void (∗ f_ptr [3]) (i n t) = {fun_x , fun_y , fun_z } ;
11 i n t ch = 0 ; /∗ d e f i n e and i n i t i a l i z e i n t e g e r v a r i ab l e ch to hold
12 the user ’ s cho i c e ∗/
13

14 p r i n t f ("Enter a number between 1 and 3 or other i n t e g e r va lue to end : ") ;
15 s can f ("%d" , &ch) ;
16

17 whi le (ch >= 1 && ch < 4) {
18 /∗ c a l l f unc t i on at l o c a t i o n given by ch in array f_ptr and pass ch
19 as an argument ∗/
20 (∗ f_ptr [ch − 1]) (ch) ;
21 p r i n t f ("\nEnter a number between 1 and 3 or other i n t e g e r va lue to end :

") ;
22 s can f ("%d" , &ch) ;
23 }
24 re turn 0 ;
25 }
26

27 void fun_x (i n t x) {
28 p r i n t f ("You entered %d −− fun_x was c a l l e d . \ n" , x) ;
29 }
30

31 void fun_y (i n t y) {
32 p r i n t f ("You entered %d −− fun_y was c a l l e d . \ n" , y) ;
33 }
34

35 void fun_z (i n t z) {
36 p r i n t f ("You entered %d −− fun_z was c a l l e d . \ n" , z) ;
37 }

Listing 5.5: Program L5Ex5.c

Lab 5 59

CPPL Functions in C

5.2.5 Recursion

A recursive function is a function that calls itself either directly (i.e., contains one or
more calls to itself) or indirectly through another function (i.e., contains a call to another
function which, in turn calls the recursive function). An exit condition (base case) from the
function has to be defined, otherwise an infinite loop results. To avoid infinite recursion,
the recursive function has to be carefully constructed to ensure that at a certain time the
function terminates without calling itself.

Several steps have to be considered when implementing recursive functions:

– Define a base case – identify the simplest case for which the solution is known or
very simple. This represents the exit condition for recursion and ensures the ending
of the function at a certain time.

– Define a recursive case – split the problem down into smaller versions of itself (sub-
problems), and call the function recursively to solve each of them.

– Ensure the recursion terminates – check that the recursive function, in the end,
reaches the base case, and no infinite loop occurs.

– Merge the solutions – merge the solutions of the subproblems to solve the original
problem.

Direct recursion

The following syntax is used to define direct recursion in C:

return_value_data_type identifier(formal parameters list) {
//body of the function
...
identifier(effective parameters list);
...

}

There are three types of direct recursion:

– Linear – occurs when an action has a simple repetitive structure consisting of some
basic step followed by the action again (contains a call to itself) (i.e., used to calculate
the factorial of a number)

– Binary – contains two calls to itself (i.e., used to generate the Fibonacci series)
– N-ary – represents the most general form of recursion, where N is not a constant, it

is a parameter of the function (i.e., used to generate combinatorial objects such as
permutations).

Listing 5.6 presents an example of direct recursion (linear).
1 #inc lude <s td i o . h>
2

3 unsigned i n t f a c t o r i a l (unsigned i n t) ; /∗ f a c t o r i a l f unc t i on prototype ∗/
4

5 i n t main () {
6 unsigned i n t i = 0 ;
7

8 p r i n t f ("Enter an unsigned i n t e g e r to c a l c u l a t e i t s f a c t o r i a l : ") ;
9 s can f ("%u" , &i) ;

10 /∗ c a l l f a c t o r i a l f unc t i on ∗/
11 p r i n t f (" Fa c t o r i a l o f %u i s %u . \ n" , i , f a c t o r i a l (i)) ;
12 re turn 0 ;
13 }

Lab 5 60

CPPL Functions in C

14 /∗ c a l c u l a t e the f a c t o r i a l o f an unsigned i n t e g e r us ing r e cu r s i on ∗/
15 unsigned i n t f a c t o r i a l (unsigned i n t i) {
16 i f (i <= 1) /∗ base case or e x i t cond i t i on ∗/
17 re turn 1 ;
18 e l s e
19 re turn i ∗ f a c t o r i a l (i − 1) ;
20 }

Listing 5.6: Program L5Ex6.c

Indirect recursion

The following syntax is used to define indirect recursion in C:

return_value_data_type identifier1(formal parameters list) {
//body of the function
...
identifier2(effective parameters list);
...

}
return_value_data_type identifier2(formal parameters list) {

//body of the function
...
identifier1(effective parameters list);
...

}

Listing 5.7 presents an example of indirect recursion.
1 #inc lude <s td i o . h>
2

3 unsigned i n t is_even (unsigned i n t) ; /∗ is_even func t i on prototype ∗/
4 unsigned i n t is_odd (unsigned i n t) ; /∗ is_odd func t i on prototype ∗/
5

6 i n t main () {
7 unsigned i n t i = 0 ;
8

9 p r i n t f ("Enter an unsigned i n t e g e r to check i f i t i s even or odd : ") ;
10 s can f ("%u" , &i) ;
11 i f (is_even (i)) /∗ c a l l is_even func t i on ∗/
12 p r i n t f ("%u i s even . " , i) ;
13 e l s e
14 p r i n t f ("%u i s odd . " , i) ;
15 re turn 0 ;
16 }
17

18 /∗ check i f an unsigned i n t e g e r i s even ∗/
19 unsigned i n t is_even (unsigned i n t i) {
20 i f (i == 0) /∗ base case ∗/
21 re turn 1 ;
22 e l s e
23 re turn is_odd (i − 1) ;
24 }
25

26 /∗ check i f an unsigned i n t e g e r i s odd ∗/
27 unsigned i n t is_odd (unsigned i n t i) {
28 i f (i == 0) /∗ base case ∗/

Lab 5 61

CPPL Functions in C

29 re turn 0 ;
30 e l s e
31 re turn is_even (i − 1) ;
32 }

Listing 5.7: Program L5Ex7.c

5.2.6 The C Standard Library

The C Standard Library offers numerous built-in functions prototypes, macros, and
types for performing mathematical calculations, string and character manipulations, in-
put/output operations, and other helpful tasks. To use them, the following headers (avail-
able in C89/C99/C11/C17/C23) have to be included in the program (Table 5.1).

Table 5.1: C Standard Library headers ([2])

Header Explanation
<assert.h> Contains macros and information for adding diagnostics that aid in program debugging.
<complex.h> Contains macros and function prototypes for complex number arithmetic.
<ctype.h> Contains function prototypes that test characters for certain properties, and function

prototypes that can be used to convert lowercase letters to uppercase letters and vice versa.
<errno.h> Defines macros that are useful for reporting error conditions.
<fenv.h> Contains types, function prototypes and macros to support the floating-point environment.
<float.h> Contains the floating-point size limits of the system.
<inttypes.h> Provides integer types definitions and macros that are consistent across machines and

independent of operating systems.
<limits.h> Contains the integral size limits of the system.
<locale.h> Contains function prototypes and other information that enable a program to be modified

for the current locale on which it’s running. The notion of locale enables the computer
system to handle different conventions for expressing data like dates, times, dollar
amounts and large numbers throughout the world.

<math.h> Contains function prototypes for computing mathematical operations.
<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual

function call and return sequence.
<signal.h> Contains function prototypes and macros to handle various conditions that

may arise during program execution.
<stdarg.h> Defines macros for dealing with a list of arguments to a function whose number

and types are unknown.
<stdatomic.h> Contains operations on atomic types, macros and function prototypes for performing atomic

operations on data shared between threads.
<stdbit.h> Contains macros to work with the byte and bit representations of types.
<stdbool.h> Contains macros for boolean type.
<stdckdint.h> Contains macros for performing checked integer arithmetic.
<stddef.h> Contains common type definitions used by C for performing calculations.
<stdint.h> Contains types and macros used to specify fixed-width integer types.
<stdio.h> Contains function prototypes for the standard input/output library functions, and informa-

tion used by them.
<stdlib.h> Contains function prototypes for conversions of numbers to text and text to numbers,

memory allocation, random numbers, and other utility functions.
<stdnoreturn.h> Contains the definition of the noreturn macro.
<string.h> Contains function prototypes for string-processing functions.
<thmath.h> Contains many types-generic macros used for mathematical operations.

It includes <math.h> and <complex.h>.
<threads.h> Contains macro, types and function prototypes that deal with threads management.
<time.h> Contains function prototypes and types for manipulating the time and date.
<uchar.h> Contains types and macros associated with extended character data types.
<wchar.h> Contains types, macros and function prototypes to work with wide streams or to manipu-

late wide strings.
<wctype.h> Contains macros and function prototypes to classify and map wide characters.

Lab 5 62

CPPL Functions in C

5.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Identify and fix the errors in the following function:
1 f unc t i on (i n t x , i n t y) {
2 i n t x ;
3 x = 20 ;
4 re turn x ;
5 }

3. What will be the output of the program?
1 #inc lude <s td i o . h>
2 void func t i on () {
3 s t a t i c i n t s = 9 ;
4 ++s ;
5 p r i n t f ("%d " , s) ;
6 }
7 i n t main () {
8 f unc t i on () ;
9 f unc t i on () ;

10 p r i n t f ("%d " , s) ;
11 re turn 0 ;
12 }

A. 10 10 10
B. 10 11 12
C. 10 11 11
D. error

4. What will be the output of the program?
1 #inc lude <s td i o . h>
2 i n t main () {
3 i n t array [] = {10 , 20 , 30 , 40 , 50} ;
4 i n t i , ∗ array_ptr ;
5

6 array_ptr = array ;
7 f o r (i = 0 ; i < 4 ; i++) {
8 f unc t i on (array_ptr++) ;
9 p r i n t f ("%d\n" , ∗ array_ptr) ;

10 }
11 re turn 0 ;
12 }
13

14 void func t i on (i n t ∗ i) {
15 ∗ i = ∗ i + 1 ;
16 }

A. 11 21 31 41
B. 20 30 40 50
C. 21 31 41 51
D. 10 20 30 40

5. Write a function named verify_numbers that checks if the second integer is a multiple
of the first for a given pair of integers. The function should have two integer formal
parameters and return true if the second is a multiple of the first, and false otherwise.

Lab 5 63

CPPL Functions in C

Use this function in a C program that receives three pairs of integers read from the
keyboard, as input.

6. Write two functions named max and min that determine the largest element of an
array of integers, and the smallest element of an array of integers, respectively. The
functions should have two formal parameters (the size of the array and the array)
and return the maximum value and the minimum value of the array’s elements. Use
these functions in a C program that inputs an array of 10 elements read from the
keyboard.

7. Write a function named perfect_square that determinates if an integer is a perfect
square. The function should have an integer formal parameter and return true if the
parameter is a perfect square, and false otherwise. Apply this function to an array
of integers, and extract all perfect squares and place them in another array.

8. Write a function that replaces the contents of two double variables with the minimum
of the two values. Use the function in a C program that inputs the numbers from
the keyboard repeatedly until a special key is pressed. The program should display
the values of the variables before and after the function is called.

9. Write a function that calculates the number of the day of a year, and the number of
days to the end of that year. Use this function in a C program that inputs a year, a
month and a day of the month from the keyboard.

10. Write a text-based, menu-driven C program that allows the user to choose whether
to calculate the carbon footprint of a plane, a car and a bicycle. Then, the user
inputs a distance in kms and the program displays the appropriate result. Write
three functions to calculate the carbon footprint of a plane, a car and a bicycle. Use
an array of function pointers to solve the request.

11. Write a C program that calculates the sum of digits of a positive integer number
using recursion.

12. Write a C program that finds the reverse of an integer number using recursion.

13. Write a C program that tests up to 10 functions defined in the C Standard Library.

5.4 References

1. Paul Deitel, Harvey Deitel, C How to Program, 2010, Sixth edition, Pearson Educa-
tion, ISBN: 978-0-13-612356-9.

2. C Standard Library header files, https://en.cppreference.com/w/c/header,
Accessed in September 2024.

Lab 5 64

https://en.cppreference.com/w/c/header

CPPL

Laboratory paper 6

Dynamic Memory Allocation and
Modular Programming

65

CPPL Dynamic Memory Allocation and Modular Programming

6.1 Overview

– Presentation of the dynamic memory allocation built-in library functions
– Presentation of variables’ scope and modular programming
– Use of dynamic memory allocation and modular programming to develop a complex

C program
– Work time: 2 hours

6.2 Theoretical Considerations

6.2.1 Dynamic memory allocation

The C programming language handles memory in three ways: statically, automatically,
or dynamically [1].

Static variables and data are allocated in a special area of the main memory, named
data segment and remain in existence for the entire duration of the program.

Automatic variables and data are allocated in the stack segment and and they are
created and destroyed as functions are called and returned.

When dealing with static and automatic variables and data, the size of the allocated
memory must be compile-time constant. If the necessary size of allocated memory is
unknown until run-time (i.e., if data of variable size are being read from a user or a
file), relying on fixed-size variables and data becomes insufficient. Also, the lifetime of
allocated memory can raise concerns. The automatic allocated variables and data cannot
survive across multiple function calls, whereas static allocated variables and data exist for
the entire duration of the program, regardless of whether they are needed [1]. Dynamic
memory allocation mitigates these limitations.

Dynamic memory allocation allows manual memory management using a special area
of the main memory, named heap. It can lead to memory fragmentation.

C has several built-in functions to perform dynamic memory allocation, listed in the
<stdlib.h> header file:

– For memory allocation: malloc, calloc, realloc;
– For memory deallocation: free.

These functions are used to allocate a block of memory on the heap segment pointed
to by the pointer to void returned by these functions. When the block of memory is no
longer required, the pointer is freed, which deallocates the block of memory on the heap,
making it available for other uses.

malloc, calloc, realloc

The malloc function allocates the requested memory and returns a pointer to it.
The prototype of the malloc function is:

1 void ∗mal loc (s i ze_t s i z e) ;

The malloc function has a formal parameter of type size_t representing the size of the
allocated memory block, in bytes.

The malloc function returns a pointer to void to the allocated block of memory (the
address of the first byte in the block) or NULL if the request could not be satisfied.
Because the pointer returned is a pointer to void, a type cast is required when storing it
into a regular typed pointer.

Lab 6 66

CPPL Dynamic Memory Allocation and Modular Programming

The calloc function allocates the requested memory, initializes it with zero and returns
a pointer to it.

The prototype of the calloc function is:
1 void ∗ c a l l o c (s i ze_t nitems , s i ze_t s i z e) ;

The calloc function has two formal parameters of type size_t representing the number
of items of a particular data type to be allocated, and respectively the size of each individual
item, in bytes.

The calloc function returns a pointer to void to the allocated block of memory (the
address of the first byte in the block) or NULL if the request could not be satisfied.
Because the pointer returned is a pointer to void, a type cast is required when storing it
into a regular typed pointer.

The realloc function attempts to resize the block of memory that was previously
allocated by a call of the malloc or calloc functions.

The prototype of the realloc function is:
1 void ∗ r e a l l o c (void ∗ptr , s i z e_t s i z e) ;

The realloc function has two formal parameters representing a pointer to void to a
block of memory previously allocated with malloc, calloc or realloc functions (pointer
to void returned by malloc, calloc or realloc calls), and respectively the size of the new
allocated block of memory, in bytes.

The realloc function returns a pointer to void to the new allocated block of memory
(the address of the first byte in the block) or NULL if the request could not be satisfied.

free

The free function deallocates the bock of memory previously allocated by a call of the
malloc, calloc or realloc functions.

The prototype of the free function is:
1 void f r e e (void ∗ ptr) ;

The free function has a formal parameter representing a pointer to void to the starting
address of the existing allocated memory block (pointer to void returned by malloc, calloc
or realloc calls).

The free function does no return any value.
Listing 6.1 presents the use of malloc, realloc and free functions to allocate/deallocate

a block of memory for an array of integers with a number of elements inserted by the user
at run-time.

1 #inc lude <s td i o . h>
2 #inc lude <s t d l i b . h>
3

4 i n t main () {
5 i n t number = 0 ;
6 i n t i = 0 ;
7 i n t sum = 0 ;
8 i n t new_size = 0 ;
9 i n t ∗ ptr = NULL;

10

11 p r i n t f ("Enter the number o f e lements o f an array : ") ;
12 s can f ("%d" , &number) ;
13 ptr = (i n t ∗) mal loc (number ∗ s i z e o f (i n t)) ; /∗ a block o f memory i s
14 a l l o c a t e d on the heap ∗/
15

Lab 6 67

CPPL Dynamic Memory Allocation and Modular Programming

16 i f (ptr == NULL) {
17 p r i n t f ("Error ! Memory not a l l o c a t e d . ") ;
18 e x i t (0) ;
19 }
20

21 p r i n t f ("Enter the e lements o f the array : ") ;
22 f o r (i = 0 ; i < number ; i++) {
23 s can f ("%d" , ptr + i) ;
24 sum += ∗(ptr + i) ;
25 }
26 p r i n t f ("Sum of the array ’ s e lements i s : %d . " , sum) ;
27

28 p r i n t f ("\nThe addre s s e s o f the a l l o c a t e d memory are : \ n") ;
29 f o r (i = 0 ; i < number ; i++)
30 p r i n t f ("Address o f the %d element with value %d i s %p . \ n" , i , ∗(ptr + i)

, ptr + i) ;
31

32 p r i n t f ("\nEnter the new s i z e o f the array : ") ;
33 s can f ("%d" , &new_size) ;
34 ptr = r e a l l o c (ptr , new_size) ; /∗ the prev ious a l l o c a t e d block o f memory
35 i s r e s i z e d ∗/
36 i f (ptr == NULL) {
37 p r i n t f ("Error ! Memory not a l l o c a t e d . ") ;
38 e x i t (0) ;
39 }
40

41 sum = 0 ;
42 p r i n t f ("Enter the new elements o f the array : ") ;
43 f o r (i = 0 ; i < new_size ; i++) {
44 s can f ("%d" , ptr + i) ;
45 sum += ∗(ptr + i) ;
46 }
47 p r i n t f ("Sum of the array ’ s e lements i s : %d . " , sum) ;
48

49 p r i n t f ("\nThe addre s s e s o f the new a l l o c a t e d memory are : \n") ;
50 f o r (i = 0 ; i < new_size ; i++)
51 p r i n t f ("Address o f the %d element with value %d i s %p . \ n" , i , ∗(ptr + i)

, ptr + i) ;
52

53 f r e e (ptr) ; /∗ the prev ious a l l o c a t e d block o f memory i s d ea l l o c a t ed ∗/
54 re turn 0 ;
55 }

Listing 6.1: Program L6Ex1.c

6.2.2 Variables’ scope

Global variables

Global variables are defined at the beginning of a source file (i.e., before any function
definition). These variables are accessible from the point of definition to the end of the
source file. In a program that utilizes multiple source files, a global variable defined in one
source file can be used in all the other source files by declaring it with the extern keyword
before the variable’s data type.

Global variables are allocated at compile-time on the data segment.
A static global variable is visible in the whole source file, but it cannot be declared

extern (and thus made visible) in other files. Its definition uses the static keyword before
the data type of the variable.

Lab 6 68

CPPL Dynamic Memory Allocation and Modular Programming

Local variables

Local variables are defined in a function or in a block of code and are visible only within
the segment where they were defined. The local variables can be of following types:

– Static variables – allocated at compile-time on the data segment. These variables
remain in memory while the program is running. Their definition uses the static
keyword before the data type of the variable;

– Automatic variables – allocated at run-time on the stack. These variables are dis-
carded upon return from a function, or at the end of the block of code.

6.2.3 Modular programming

Modular programming is a method to structure large programs in smaller parts, namely
modules [2]. A module contains related functions, as they are developed for solving a
subproblem of a complex problem.

Every module has a well defined interface (header file - .h) and an implementation part
(source file - .c). The module interface specifies how services (functions) provided by the
module are made available to client programs. The module implementation hides the code
and any other private implementation details from client programs that should not have
access to them.

Module interface

Every module interface file (header file - .h) should start with simply C comments
that present its purpose, author information, copyright statement, version number and
how to check for further updates. The header file contains only definitions of constants,
user-defined types, declarations of global variables, and function prototypes that client
programs are allowed to access and use.

The definitions/declarations must be enclosed between preprocessor directives, fore-
seeing in this way the same definitions/declarations from being parsed twice in the same
compilation run.

Module implementation

Every module implementation file (source file - .c) should include the required headers
and then its own header file. Including its own header file, the code file allocates and
initializes the global variables declared in the header. Another useful effect of including
the header is that function prototypes are checked against the actual functions, so that for
example if some argument in the prototype is forgotten, or if the code is changed and no
update of the header is performed, then the compiler will detect the mismatch and inform
the programmer with a proper error message.

The constants and the user-defined types defined inside a source file cannot be used by
client programs, they are private. The global variables and functions for internal use are
defined using the static keyword to make them private.

Main program

The main program is a source file that does not require a header file, and contains
the only the main() function, that does not have a prototype. This source file includes
and initializes all the required modules, and finally terminates them once the program is
finished.

Lab 6 69

CPPL Dynamic Memory Allocation and Modular Programming

Listings 6.2, 6.3, 6.4 present a modularized C program example that computes the
product of two matrices using pointers and dynamic memory allocation.

1 /∗ ∗∗ ∗/
2 /∗ matrix . h − Header f i l e f o r module matrix ∗/
3 /∗ Copyright : 2024 ∗/
4 /∗ Author : − ∗/
5 /∗ Vers ion : 09−11−2024 ∗/
6 /∗ Updates : − ∗/
7 /∗ ∗∗ ∗/
8 #i f n d e f MATRIX_H_INCLUDED
9 #de f i n e MATRIX_H_INCLUDED

10

11 /∗ Headers r equ i r ed by the f o l l ow i ng d e f i n i t i o n s / d e c l a r a t i o n s : ∗/
12 #inc lude <s t d l i b . h>
13

14 /∗ Constants d e f i n i t i o n s : ∗/
15

16 /∗ User−de f ined types d e f i n i t i o n s : ∗/
17

18 /∗ Global v a r i a b l e s d e c l a r a t i o n s : ∗/
19

20 /∗ Function prototypes : ∗/
21 extern i n t ∗∗ a l loc_matr ix (int , i n t) ;
22 extern void free_matr ix (i n t ∗∗ , i n t) ;
23 extern i n t read_matrix (i n t ∗∗ , int , int , const char ∗) ;
24 extern void print_matrix (i n t ∗∗ , int , int , const char ∗) ;
25 extern i n t ∗∗ multiply_matrix (i n t ∗∗ , i n t ∗∗ , int , int , i n t) ;
26

27 #end i f // MATRIX_H_INCLUDED

Listing 6.2: matrix.h

1 /∗ ∗∗ ∗/
2 /∗ matrix . c − See matrix . h f o r copyr ight and i n f o ∗/
3 /∗ ∗∗ ∗/
4 /∗ System headers and app l i c a t i o n s p e c i f i c headers : ∗/
5 #inc lude "matrix . h"
6

7 /∗ Pr ivate cons tant s d e f i n i t i o n s : ∗/
8

9 /∗ Pr ivate user−de f ined types d e f i n i t i o n s : ∗/
10

11 /∗ Pr ivate g l oba l v a r i a b l e s d e f i n i t i o n s : ∗/
12

13 /∗ Publ ic g l oba l v a r i a b l e s d e f i n i t i o n s : ∗/
14

15 /∗ Implementation o f the p r i va t e f unc t i on s : ∗/
16

17 /∗ Implementation o f the pub l i c f unc t i on s : ∗/
18 /∗ ∗∗ ∗/
19 /∗ FUNCTION NAME: al loc_matr ix ∗/
20 /∗ DESCRIPTION: a l l o c a t e s memory f o r a m by n matrix o f i n t e g e r s ∗/
21 /∗ ARGUMENT LIST : ∗/
22 /∗ Argument Type IO Desc r ip t i on ∗/
23 /∗ −−−−−−−−−−−−− −−−−−−−− −−− −−− ∗/
24 /∗ m in t I number o f rows f o r matrix ∗/
25 /∗ n i n t I number o f columns f o r matrix ∗/
26 /∗ RETURN VALUE: i n t ∗∗ po in t e r to a l l o c a t e d area or NULL on f a i l u r e ∗/
27 /∗ CHANGES: − ∗/
28 /∗ ∗∗ ∗/

Lab 6 70

CPPL Dynamic Memory Allocation and Modular Programming

29 i n t ∗∗ a l loc_matr ix (i n t m, i n t n) {
30 i n t ∗∗matrix = NULL;
31 i n t i = 0 ;
32

33 matrix = (i n t ∗∗) mal loc (m ∗ s i z e o f (i n t ∗)) ;
34 i f (! matrix) re turn NULL;
35 f o r (i = 0 ; i < m; i++) {
36 ∗(matrix + i) = (i n t ∗) mal loc (n ∗ s i z e o f (i n t)) ;
37 i f (! (∗ (matrix+i))) re turn NULL;
38 }
39 re turn matrix ;
40 }
41

42 /∗ ∗∗∗ ∗/
43 /∗ FUNCTION NAME: free_matr ix ∗/
44 /∗ DESCRIPTION: d e a l l o c a t e s memory f o r a m by n matrix o f i n t e g e r s ∗/
45 /∗ ARGUMENT LIST : ∗/
46 /∗ Argument Type IO Desc r ip t i on ∗/
47 /∗ −−−−−−−−−−−−− −−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−− ∗/
48 /∗ matrix i n t ∗∗ I matrix to f r e e ∗/
49 /∗ m in t I number o f rows f o r matrix ∗/
50 /∗ RETURN VALUE: void ∗/
51 /∗ CHANGES: memory area f r e ed can no longe r be used ∗/
52 /∗ ∗∗∗ ∗/
53 void free_matr ix (i n t ∗∗matrix , i n t m) {
54 i n t i = 0 ;
55

56 f o r (i = 0 ; i < m; i++) {
57 f r e e (∗ (matrix + i)) ;
58 }
59 f r e e (matrix) ;
60 }
61

62 /∗ ∗∗∗ ∗/
63 /∗ FUNCTION NAME: read_matrix ∗/
64 /∗ DESCRIPTION: reads a matrix o f i n t e g e r s ∗/
65 /∗ ARGUMENT LIST : ∗/
66 /∗ Argument Type IO Desc r ip t i on ∗/
67 /∗ −−−−−−−−−−−−− −−−−−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
68 /∗ matrix i n t ∗∗ I po in t e r to memory area where ∗/
69 /∗ to s t o r e read data ∗/
70 /∗ m in t I number o f rows f o r matrix ∗/
71 /∗ n i n t I number o f columns f o r matrix ∗/
72 /∗ name const char ∗ I name to be d i sp layed f o r each ∗/
73 /∗ element o f the matrix ∗/
74 /∗ RETURN VALUE: i n t 1 on succes s , 0 o therwi se ∗/
75 /∗ CHANGES: memory area p r ev i ou s l y r e s e rved f o r s t o r i n g ∗/
76 /∗ the read matrix ∗/
77 /∗ ∗∗∗ ∗/
78 i n t read_matrix (i n t ∗∗matrix , i n t m, i n t n , const char ∗name) {
79 i n t i = 0 , j = 0 ;
80

81 f o r (i = 0 ; i < m; i++)
82 f o r (j = 0 ; j < n ; j++) {
83 p r i n t f ("%s [%d][%d] = " , name , i , j) ;
84 i f (1 != scan f ("%d" , ∗(matrix + i) + j))
85 re turn 0 ;
86 }
87 re turn 1 ;
88 }
89

Lab 6 71

CPPL Dynamic Memory Allocation and Modular Programming

90 /∗ ∗∗ ∗/
91 /∗ FUNCTION NAME: print_matrix ∗/
92 /∗ DESCRIPTION: p r i n t s a matrix preceeded by a name given to i t ∗/
93 /∗ ARGUMENT LIST : ∗/
94 /∗ Argument Type IO Desc r ip t i on ∗/
95 /∗ −−−−−−−−−−−−− −−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
96 /∗ matrix i n t ∗∗ I matrix to p r i n t ∗/
97 /∗ m in t I number o f rows f o r matrix to p r i n t ∗/
98 /∗ n i n t I number o f columns f o r matrix to p r i n t ∗/
99 /∗ name const char ∗ I name o f matrix ∗/

100 /∗ RETURN VALUE: void ∗/
101 /∗ CHANGES: − ∗/
102 /∗ ∗∗ ∗/
103 void print_matrix (i n t ∗∗matrix , i n t m, i n t n , const char ∗name) {
104 i n t i = 0 , j = 0 ;
105

106 p r i n t f ("Matrix %s i s : \ n−−−−−−−−−−−−−−−−−−−−−−−−\n" , name) ;
107 f o r (i = 0 ; i < m; i++) {
108 f o r (j = 0 ; j < n ; j++) {
109 p r i n t f ("%d " , ∗(∗(matrix + i) + j)) ;
110 }
111 p r i n t f ("\n") ;
112 }
113 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
114 }
115

116 /∗ ∗∗∗ ∗/
117 /∗ FUNCTION NAME: multiply_matrix ∗/
118 /∗ DESCRIPTION: mu l t i p l i e s matr i ce s matrix1 and matrix2 ∗/
119 /∗ ARGUMENT LIST : ∗/
120 /∗ Argument Type IO Desc r ip t i on ∗/
121 /∗ −−−−−−−−−−−−− −−−−−−−− −− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
122 /∗ matrix1 i n t ∗∗ I matrix matrix1 ∗/
123 /∗ matrix2 i n t ∗∗ I matrix matrix2 ∗/
124 /∗ m in t I number o f rows f o r matrix1 ∗/
125 /∗ n i n t I number o f columns f o r matrix1 ∗/
126 /∗ and o f rows f o r matrix2 ∗/
127 /∗ p i n t I number o f columns f o r matrix2 ∗/
128 /∗ RETURN VALUE: i n t ∗∗ a newly a l l o c a t e d matrix ho ld ing ∗/
129 /∗ the product o f matrix1 and matrix2 ∗/
130 /∗ CHANGES: − ∗/
131 /∗ ∗∗∗ ∗/
132 i n t ∗∗ multiply_matrix (i n t ∗∗matrix1 , i n t ∗∗matrix2 , i n t m, i n t n , i n t p) {
133 i n t i = 0 , j = 0 , k = 0 ;
134 i n t ∗∗ r e s u l t = al loc_matr ix (m, p) ; // a l o c a t e r e s u l t matrix
135

136 f o r (i = 0 ; i < m; i++)
137 f o r (j = 0 ; j < p ; j++)
138 ∗(∗(r e s u l t + i) + j) = 0 ;
139 f o r (i = 0 ; i < m; i++)
140 f o r (j = 0 ; j < n ; j++)
141 f o r (k = 0 ; k < p ; k++)
142 ∗(∗(r e s u l t + i) + k) += (∗ (∗ (matrix1 + i) + j)) ∗ (∗ (∗ (matrix2 + j)

+ k)) ;
143 re turn r e s u l t ;
144 }

Listing 6.3: matrix.c

Lab 6 72

CPPL Dynamic Memory Allocation and Modular Programming

1 /∗ ∗∗ ∗/
2 /∗ Complex app l i c a t i o n ∗/
3 /∗ Copyright : 2024 ∗/
4 /∗ Author : − ∗/
5 /∗ Vers ion : 09−11−2024 ∗/
6 /∗ Updates : − ∗/
7 /∗ ∗∗ ∗/
8 /∗ Inc lude standard headers : ∗/
9 #inc lude <s td i o . h>

10 #inc lude <s t d l i b . h>
11

12 /∗ Inc lude modules header that are d i r e c t l y invoked : ∗/
13 #inc lude "matrix . h"
14

15 i n t main () {
16 i n t m = 0 , n = 0 , p = 0 ; // matr i ce s dimensions
17 i n t ∗∗matrix1 , ∗∗matrix2 , ∗∗ r e s u l t ; // matr i ce s
18

19 /∗ Read the dimensions o f the matr i ce s ∗/
20 p r i n t f (" Please input the number o f rows o f the F i r s t matrix : ") ;
21 s can f ("%d" , &m) ;
22 p r i n t f (" Please input the number o f columns/rows o f the F i r s t matrix /Second

matrix : ") ;
23 s can f ("%d" , &n) ;
24 p r i n t f (" Please input the number o f columns o f the Second matrix : ") ;
25 s can f ("%d" , &p) ;
26

27 /∗ Al l o ca t e memory f o r matr i ce s ∗/
28 matrix1 = al loc_matr ix (m, n) ;
29 matrix2 = al loc_matr ix (n , p) ;
30

31 /∗ Read and pr in t matr i ce s matrix1 and matrix2 ∗/
32 read_matrix (matrix1 , m, n , " F i r s t matrix ") ;
33 print_matrix (matrix1 , m, n , " F i r s t matrix ") ;
34 read_matrix (matrix2 , n , p , "Second matrix ") ;
35 print_matrix (matrix2 , n , p , "Second matrix ") ;
36

37 /∗ Mult ip ly matrix1 by matrix2 and pr in t the r e s u l t ∗/
38 r e s u l t = multiply_matrix (matrix1 , matrix2 , m, n , p) ;
39 print_matrix (r e su l t , m, p , "Product") ;
40

41 /∗ Dea l l o ca t e memory ∗/
42 f ree_matr ix (r e su l t , m) ;
43 f ree_matr ix (matrix2 , n) ;
44 f ree_matr ix (matrix1 , m) ;
45 re turn 0 ;
46 }

Listing 6.4: main.c

Code documentation tools

When dealing with large programs a code documentation generator tool should be used
to provide a comprehensive description of the code (i.e., its purpose, functionality, usage).
This documentation helps the developers to understand the architecture and logic behind
the code, which leads to easier maintenance and cooperation.

Doxygen [3] is a widely-used documentation generator tool that can be used for C
programs. It generates automatically the documentation in formats like HTML, PDF,
Word and XML. The documentation consists of source code comments, information about

Lab 6 73

CPPL Dynamic Memory Allocation and Modular Programming

the functions, and variables. By its cross-referencing capabilities, Doxygen allows easy
navigation between different parts of the documentation.

6.3 Lab Tasks

1. Run the program given as example and analyze the output.

2. Write a modular program of your choice.

6.4 References

1. C dynamic memory allocation, https://en.wikipedia.org/wiki/C_dynamic_memo
ry_allocation, Accessed in September 2024.

2. Modular programming in C, https://www.icosaedro.it/c-modules.html, Ac-
cessed in September 2024.

3. Doxygen, https://www.doxygen.nl/, Accessed in October 2024.

Lab 6 74

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://www.icosaedro.it/c-modules.html
https://www.doxygen.nl/

CPPL

Laboratory paper 7

Strings in C

75

CPPL Strings in C

7.1 Overview

– Presentation of strings in C
– Use of strings within simple C programs
– Work time: 2 hours

7.2 Theoretical Considerations

A string in C is a one dimensional array of characters that ends with a null character
′\0′ (NUL). Each character of a string is represented on a byte by its ASCII (American
Standard Code for Information Interchange) Code.

7.2.1 String variable definition and initialization

The following syntaxes is used to define a string variable in C:

char identifier[integer_constant];
char identifier[] = {’char_0’, ’char_1’, ..., ’char_n’, ’\0’};
char char identifier[] = "char_0char_1...char_n";

where:

– identifier is the name of the string;
– integer_constant is the size of the string given as an integer constant greater than 0;
– char_0, char_1, ..., char_n are the characters of the string.

From the previously presented syntaxes, it appears that the size of a string can be
omitted when defining it, but in this case the string must be initialized.

A string can also be defined with the help of pointers. In this case, the name of the
array that holds the string is considered a constant pointer to the character string, as the
syntax shows:

char *identifier;

where:

– * is the symbol used to define a pointer (in this case * is not the dereference operator);
– identifier is the name of the string.

This definition of a string requires initialization. In the following, three ways for doing
this are presented.

Initialization with the address of a static string
char identifier1[3] = "cp"; char *identifier = &identifier1;
Initialization with the address of a constant string
char *identifier = "char_0char_1...char_n";
Initialization with the address of a dynamic allocated memory block
char *identifier = (char *)malloc(100 * sizeof(char));

Several definitions of string variables are presented below.
1 char s t r i n g [] = "computer" ;
2 char s t r i n g 1 [] = { ’ c ’ , ’ o ’ , ’m’ , ’ p ’ , ’ u ’ , ’ t ’ , ’ e ’ , ’ r ’ , ’ \0 ’ } ;
3 char ∗ s t r i n g 2 = "computer" ;

Lab 7 76

CPPL Strings in C

4 char s t r i n g 3 [1 0] ;
5 char ∗ s t r i n g 4 = (char ∗) mal loc (10 ∗ s i z e o f (char)) ;

7.2.2 Internal memory representation of a string

Figure 7.1 presents graphically the way in which a string is representing in the computer
memory. Each character is represented in binary using the ASCII Code (i.e. ’c’) ->
01100011.

Figure 7.1: Memory representation of a string definition and initialization

The notations (subscript and offset) used in Figure 7.1 can be generalized as follows
[1]:

– string[i], where i ∈ [0, size of string] represents the ASCII Code of the ith character
of the string;

– string + i, where i ∈ [0, size of string] is the address of the ith character of the string;
– *(string + i) has the same effect as string[i].

Listing 7.1 displays each character within the string and their addresses using the subscript
and offset notations.

1 #inc lude <s td i o . h>
2 #inc lude <s t d l i b . h>
3

4 i n t main () {
5 i n t i = 0 ;
6 char s t r i n g [] = {"computer" } ;
7

8 f o r (i = 0 ; i < 9 ; i++)
9 p r i n t f (" s t r i n g [%d] = %c address = %p\n" , i , s t r i n g [i] , s t r i n g + i) ;

10 re turn 0 ;
11 }

Listing 7.1: Program L7Ex1.c

7.2.3 Array of strings

Multiple strings can be grouped to form an array of strings. An array of strings is a
two dimensional array that may be defined in C as:

Lab 7 77

CPPL Strings in C

char identifier[NUMBER_OF_STRINGS][MAX_STRING_SIZE] =
{"string_0", "string_1", ..., "string_number_of_strings - 1"};

where:

– identifier is the name of the array of strings;
– NUMBER_OF_STRINGS is the number of the strings that form the array;
– MAX_STRING_SIZE is the size of the longest string in the array;
– string_0, string_1, ..., string_number_of_strings - 1 are the strings of the array.

Another way to define an array of strings is by using an array of pointers.

char *identifier[]={"string_0", "string_1", ..., "string_n"};

where:

– * is the symbol used to define a pointer (in this case * is not the dereference operator);
– identifier is the name of the array of strings (identifier[i], for i ∈ [0, n] is a pointer to

the string_i);
– string_0, string_1, ..., string_n are the strings of the array.

Several definitions of arrays of strings are presented below.
1 char ar ray_st r ings1 [2] [9] = {{ ’ t ’ , ’ e ’ , ’ s ’ , ’ t ’ , ’ \0 ’ } ,
2 { ’ c ’ , ’ o ’ , ’m’ , ’ p ’ , ’ u ’ , ’ t ’ , ’ e ’ , ’ r ’ , ’ \0 ’ }} ;
3 char ar ray_st r ings2 [2] [9] = {" t e s t " , "computer" } ;
4 char ∗ ar ray_st r ings [] = {" t e s t " , "computer" } ;

7.2.4 Internal memory representation of an array of strings

Figure 7.2 presents graphically the way in which an array of strings, defined using an
array of pointers, is represented in the computer memory. The notations (subscript and
offset) used in Figure 7.2 can be generalized as follows:

– array_strings + i points to the ith string or the array;
– *(array_strings + i) + j points to the jth character of the ith string (*(array_strings

+ i) + j is a pointer to char (char *));
– *(*(array_strings + i) + j) gets the element at the jth character of the ith string and

has the same effect as array_strings[i][j].

7.2.5 Standard string processing functions

The C programming language has a set of built-in functions that deal with string
processing. These are included in the <string.h> header file. The most commonly used
are the following:

– For string length: strlen;
– For string copy: strcpy, strncpy;
– For string concatenation: strcat, strncat;
– For string comparison: strcmp, strncmp;
– For string search: strchr, strstr.

Lab 7 78

CPPL Strings in C

Figure 7.2: Memory representation of an array of two arrays of characters (strings) definition and
initialization

strlen

The strlen function computes the length (size) of a string up to but not including the
terminating ’\0’ character.

The prototype of the strlen function is:
1 s i ze_t s t r l e n (const char ∗ s t r) ;

The strlen function has a formal parameter str of type const char * representing the
string, and returns an unsigned integer value of type size_t representing the length of the
string.

strcpy and strncpy

The strcpy function copies a source string to a destination string. The copy includes
the ’\0’ character.

The prototype of the strcpy function is:
1 char ∗ s t r cpy (char ∗dest , const char ∗ s r c) ;

The strcpy function has two formal parameters, src of type const char * representing
the source string, respectively dest of type char * representing the destination string, and
returns the address of the destination string.

The strncpy function copies a specified number of characters from a source string to a
destination string. After the last character that is transferred, the ’\0’ character must be

Lab 7 79

CPPL Strings in C

appended. If the number of characters, which is to be copied, is greater than the length of
the source string, the entire source string is copied.

The prototype of the strncpy function is:
1 char ∗ strncpy (char ∗dest , const char ∗ src , s i z e_t n) ;

The strncpy function has three formal parameters, src of type const char * representing
the source string, dest of type char * representing the destination string, respectively n of
type size_t representing the number of characters to be copied, and returns the address of
the destination string.

strcat and strncat

The strcat function appends a source string to the end of a destination string. After
the last character that is appended, the ’\0’ character must be inserted.

The prototype of the strcat function is:
1 char ∗ s t r c a t (char ∗dest , const char ∗ s r c) ;

The strcat function has two formal parameters, src of type const char * representing
the source string, respectively dest of type char * representing the destination string, and
returns the address of the destination string.

The strncat function appends at most a specified number of characters of a source
string to the end of a destination string. The ’\0’ character is automatically appended to
the result string. If the number of characters, which is to be appended, is greater than the
length of the source string, the function has the effect as the strcat function.

The prototype of the strncat function is:
1 char ∗ s t rn ca t (char ∗dest , const char ∗ src , s i z e_t n) ;

The strncat function has three formal parameters, src of type const char * representing
the source string, dest of type char * representing the destination string, respectively n of
type size_t representing the number of characters to be appended, and returns the address
of the destination string.

strcmp and strncmp

The strcmp function compares two strings.
The prototype of the strcmp function is:

1 i n t strcmp (const char ∗ st r1 , const char ∗ s t r 2) ;

The strcmp function has two formal parameters, str1 and str2 of type const char *
representing the strings which are compared, and returns a negative value if the string
having the address str1 is less than the string having the address str2, 0 if the two strings
are equal, and a positive value if the string having the address str1 is greater than the
string having the address str2.

The strncmp function compares a specified number of characters from two strings.
The prototype of the strcmp function is:

1 i n t strncmp (const char ∗ st r1 , const char ∗ st r2 , s i ze_t n) ;

The strncmp function has three formal parameters, str1 and str2 of type const char *
representing the strings from where n number of characters of type size_t are compared,
and returns a negative value if the string having the address str1 is less than the string
having the address str2, 0 if the two strings are equal or if their first n characters are equal,

Lab 7 80

CPPL Strings in C

and a positive value if the string having the address str1 is greater than the string having
the address str2.

There is a frequent error that occurs when dealing with the comparison of two strings.
The next listings highlight the difference between the use of the simple assignment operator
and of the strcmp function.

1 char a [5 0] = { ’ \0 ’ } ;
2 char b [5 0] = { ’ \0 ’ } ;
3 s can f ("%s%s" , a , b) ;
4 i f (a == b) p r i n t f ("The s t r i n g s are equal . \ n") ; //Wrong − the addre s s e s o f a

and b are compared

1 char a [5 0] = { ’ \0 ’ } ;
2 char b [5 0] = { ’ \0 ’ } ;
3 s can f ("%s%s" , a , b) ;
4 i f (strcmp (a , b) == 0) p r i n t f ("The s t r i n g s are equal . \ n") ; // Correct − the

va lue s o f a and b are compared

strchr and strstr

The strchr function searches for the first occurrence of a character in a string.
The prototype of the strchr function is:

1 char ∗ s t r c h r (const char ∗ s t r , i n t c) ;

The strchr function has two formal parameters, str of type const char * representing
the string and c of type integer representing the character to be searched, and returns the
address of the first occurrence of character in string.

The strstr function searches for the first occurrence of a string in another string.
The prototype of the strchr function is:

1 char ∗ s t r s t r (const char ∗ s t r , const char ∗ subs t r) ;

The strstr function has two formal parameters, str of type const char * representing
the source string, substr of type const char * representing the string to be searched in the
source string, and returns the address of the first occurrence of string substr in string str.

Listing 7.2 presents a C program which exemplifies the use of some string processing
built-in functions.

1 #inc lude <s td i o . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <s t r i n g . h>
4 #de f i n e MAX_LENGTH 50
5

6 i n t main () {
7 char s r c_s t r ing [] = {"computer programming" } ;
8 char des t_st r ing [MAX_LENGTH] = { ’ \0 ’ } ;
9 char sub_str ing [MAX_LENGTH] = { ’ \0 ’ } ;

10 char ∗ s t r i n g = NULL;
11 char ch = ’ \0 ’ ;
12 i n t nch = 0 ;
13

14 p r i n t f ("The l ength o f the source s t r i n g i s : %u\n" , s t r l e n (s r c_s t r ing)) ;
15 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
16 p r i n t f ("The source s t r i n g : %s \n" , s r c_s t r ing) ;
17 p r i n t f ("The d e s t i n a t i on s t r i n g be f o r e copying the source s t r i n g : %s \n" ,

des t_st r ing) ;
18 s t r cpy (dest_str ing , s r c_s t r ing) ;
19 p r i n t f ("The d e s t i n a t i on s t r i n g a f t e r copying the source s t r i n g : %s \n" ,

des t_st r ing) ;

Lab 7 81

CPPL Strings in C

20 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
21 i f (strcmp (dest_str ing , s r c_s t r ing) == 0)
22 p r i n t f (" Source s t r i n g and de s t i n a t i on s t r i n g are equal . \ n") ;
23 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
24 p r i n t f (" I n s e r t how many cha ra c t e r s to copy from the source s t r i n g to

sub s t r i ng : ") ;
25 s can f ("%d" , &nch) ;
26 s t rncpy (sub_string , s rc_str ing , nch) ;
27 p r i n t f ("The subs t r i ng a f t e r copying %d cha ra c t e r s from the source s t r i n g :

%s \n" , nch , sub_str ing) ;
28 p r i n t f (" I n s e r t how many cha ra c t e r s to append from the source s t r i n g to

d e s t i n a t i on s t r i n g : ") ;
29 s can f ("%d" , &nch) ;
30 s t r n ca t (dest_str ing , s rc_str ing , nch) ;
31 p r i n t f ("The d e s t i n a t i on s t r i n g a f t e r appending %d cha ra c t e r s from the

source s t r i n g : %s \n" , nch , des t_st r ing) ;
32 p r i n t f (" I n s e r t how many cha ra c t e r s to be compared from de s t i n a t i on s t r i n g

and subs t r i ng : ") ;
33 s can f ("%d" , &nch) ;
34 i f (strncmp (dest_str ing , sub_string , nch) == 0)
35 p r i n t f ("The f i r s t %d cha ra c t e r s from the d e s t i n a t i on s t r i n g and the

sub s t r i ng are equal . \ n" , nch) ;
36 e l s e
37 p r i n t f ("The f i r s t %d cha ra c t e r s from the d e s t i n a t i on s t r i n g and the

sub s t r i ng are not equal . \ n" , nch) ;
38 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
39 p r i n t f (" I n s e r t a cha rac t e r to be searched in sub s t r i ng : ") ;
40 s can f (" %c" , &ch) ;
41 s t r i n g = s t r ch r (sub_string , ch) ;
42 p r i n t f (" Substr ing a f t e r the f i r s t %c charac t e r i s : %s " , ch , s t r i n g + 1) ;
43 re turn 0 ;
44 }

Listing 7.2: Program L7Ex2.c

7.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Write a function that removes a substring from an initial string by indicating the
starting position and the length of the substring to be deleted. Use the function in
a C program that inputs from the keyboard the starting position and the length of
the substring to be deleted from the keyboard.

3. Write a C program to read several strings form the keyboard and display the lexico-
graphically largest and smallest strings. Use strcpy and strcmp built-in functions.

4. Write a C program to read several strings from the keyboard and display the longest
string. Use dynamic memory allocation.

7.4 References

1. Iosif Ignat, Programarea calculatoarelor: indrumator de lucrari de laborator, 2003,
Second edition, U.T.Press, Cluj-Napoca, ISBN: 973-662-024-7.

Lab 7 82

CPPL

Laboratory paper 8

Structures, Unions and
Enumerations in C

83

CPPL Structures, Unions and Enumerations in C

8.1 Overview

– Presentation of user-defined data types: structure, union, and enumeration
– Use of user-defined data types to develop C programs
– Work time: 2 hours

8.2 Theoretical Considerations

Structures, unions, and enumerations are C programming language elements that allow
the definition of new data types.

8.2.1 Structures

Structures provide a method for storing various values in variables that can have different
data types, all under a single name.

Definition

The following syntax is used to define a structure in C:

struct structure_identifier {
data_type structure_member1_identifier;
data_type structure_member2_identifier;
......
data_type structure_membern_identifier;

};

where:

– structure_identifier is the name of the structure;
– One or more members, separated by semicolon and specified by:

– structure_member_identifier.

Several structure definitions are presented below:
1 s t r u c t book {
2 i n t book_id ;
3 char t i t l e [5 0] ;
4 char author [5 0] ;
5 } ;
6

7 s t r u c t address {
8 char ∗ c i t y ;
9 char ∗ country ;

10 } ;
11

12 s t r u c t student {
13 i n t student_id ;
14 i n t student_age ;
15 char ∗student_name ;
16 s t r u c t address student_address ;
17 } ;

Lab 8 84

CPPL Structures, Unions and Enumerations in C

Definition and initialization of structure variables

Storage is allocated for a structure when a variable of that structure is defined.
A structure variable can either be defined through a structure definition, or as a separate

definition like basic data types.
The following syntaxes are used to define structure variables in C:

struct structure_identifier {
data_type structure_member1_identifier;
data_type structure_member2_identifier;
......
data_type structure_membern_identifier;

} variable1_identifier [, variable2_identifier, ... , variablen_identifier];

struct structure_identifier variable1_identifier [, variable2_identifier, ... , variablen_identifier];

Several structure variables definitions are presented below:
1 s t r u c t book {
2 i n t book_id ;
3 char t i t l e [5 0] ;
4 char author [5 0] ;
5 } book1 , book2 ;
6

7 s t r u c t book book3 , book4 ;

Structure variables can be initialized using curly braces. Each member of the structure
receives a proper value. If not all members of a structure variable have been initialized,
the uninitialized ones will be automatically set to 0, NUL if the member is a character, or
NULL if the member is a pointer. The variables of a structure defined outside a function
definition are automatically set to 0, NUL or NULL if they are not explicitly initialized.

The variables of a structure may also be initialized through assignment statements. In
this case, a structure variable of the same type can be assigned, or values can be assigned
to the individual members of the structure.

Two examples of structure variables initializations are presented below:
1 s t r u c t book {
2 i n t book_id ;
3 char t i t l e [5 0] ;
4 char author [5 0] ;
5 } ;
6

7 s t r u c t book book1 = {1 , "C How to Program" , " De i t e l " } ;
8 s t r u c t book book2 = book1 ;

Accessing structure members

The following two C operators are used to access the members of a structure [1]:

– The structure member operator (.), also called the dot operator. This operator
accesses a structure member using a structure variable name.

– The structure pointer operator (->), also called the arrow operator. This operator
accesses a structure member using a pointer to the structure.

Listing 8.1 presents a C program where the members of a structure are accessed using
both operators.

Lab 8 85

CPPL Structures, Unions and Enumerations in C

1 #inc lude <s td i o . h>
2 #inc lude <s t r i n g . h>
3

4 s t r u c t book { /∗ de f i n e data type s t r u c t book ∗/
5 i n t book_id ;
6 char t i t l e [5 0] ;
7 char author [5 0] ;
8 } ;
9

10 void pr in t_st ruc t (s t r u c t book) ;
11

12 i n t main () {
13 s t r u c t book book1 = {1 , "C How to Program" , " De i t e l " } ; /∗ d e f i n e and
14 i n i t i a l i z e book1 a va r i ab l e o f type s t r u c t book ∗/
15 pr in t_st ruc t (book1) ;
16 book1 . book_id = 2 ;
17 s t r cpy (book1 . t i t l e , "C Programming") ;
18 s t r cpy (book1 . author , "Smith") ;
19 pr in t_st ruc t (book1) ;
20 re turn 0 ;
21 }
22

23 void pr in t_st ruc t (s t r u c t book bk) {
24 s t r u c t book ∗bk_ptr = &bk ;
25 p r i n t f ("%d ; %s ; %s \n" , bk . book_id , bk . t i t l e , bk . author) ;
26 p r i n t f ("%d ; %s ; %s \n" , bk_ptr−>book_id , bk_ptr−>t i t l e , bk_ptr−>author) ;
27 p r i n t f ("%d ; %s ; %s \n" , (∗ bk_ptr) . book_id , (∗ bk_ptr) . t i t l e , (∗ bk_ptr) .

author) ;
28 }

Listing 8.1: Program L8Ex1.c

Listing 8.2 presents a C program that dynamically allocates memory for a varying
number of a structure variables inserted by the user from the keyboard (this forms an
array of structure variables).

1 #inc lude <s td i o . h>
2 #inc lude <s t d l i b . h>
3

4 s t r u c t s tock {
5 char code [3] ;
6 char name [3 0] ;
7 i n t quant i ty ;
8 f l o a t p r i c e ;
9 } ;

10

11 void inse r t_products (int , s t r u c t s tock ∗) ;
12 void disp lay_products (int , s t r u c t s tock ∗) ;
13

14 i n t main () {
15 s t r u c t s tock ∗ ptr ;
16 i n t number = 0 ;
17

18 p r i n t f ("Enter the number o f products : ") ;
19 s can f ("%d" , &number) ;
20

21 ptr = (s t r u c t s tock ∗) mal loc (number ∗ s i z e o f (s t r u c t s tock)) ;
22 in se r t_products (number , ptr) ;
23

24 p r i n t f (" Disp lay ing the products with quant i ty > 0 :\n") ;
25 disp lay_products (number , ptr) ;

Lab 8 86

CPPL Structures, Unions and Enumerations in C

26

27 f r e e (ptr) ;
28 re turn 0 ;
29 }
30

31 void inse r t_products (i n t number , s t r u c t s tock ∗ s t) {
32 i n t i = 0 ;
33 f o r (i = 0 ; i < number ; i++) {
34 p r i n t f ("Enter code , name , quantity , p r i c e o f the %d product : \ n" , i + 1) ;
35 s can f ("%s%s%d%f " , (s t + i) −> code , (s t + i) −> name , &(s t + i) −>

quantity , &(s t + i) −> pr i c e) ;
36 }
37 }
38

39 void disp lay_products (i n t number , s t r u c t s tock ∗ s t) {
40 i n t i = 0 ;
41 f o r (i = 0 ; i < number ; i++) {
42 i f ((s t + i) −> quant i ty > 0)
43 p r i n t f ("%s \ t%s \ t%d\ t%.2 f \n" , (s t + i) −> code , (s t + i) −> name , (s t +

i) −> quantity , (s t + i) −> pr i c e) ;
44 }
45 }

Listing 8.2: Program L8Ex2.c

8.2.2 Unions

At different times during execution, the same memory block can hold different data
types. This is useful for saving memory. This can be achieved by grouping all data which
will be allocated in the same memory block. The data types obtained in this way are called
unions. In practice, the unions are rarely used in practice.

Definition

The following syntax is used to define a union in C:

union union_identifier {
data_type union_member1_identifier;
data_type union_member2_identifier;
......
data_type union_membern_identifier;

};

where:

– union_identifier is the name of the union;
– One or more members, separated by semicolon and specified by:

– union_member_identifier.

Two union definitions are presented below:
1 union t e s t 1 {
2 i n t x ;
3 char y ;
4 } ;

Lab 8 87

CPPL Structures, Unions and Enumerations in C

1 union t e s t 2 {
2 i n t a r r [1 0] ;
3 char y ;
4 } ;

At any given time only one member of a union can contain a value, although the union
in question has many members. The size of a union is taken according to the size of the
largest data type member of the union.

Definition of union variables

A union variable can either be defined through a union definition, or as a separate
definition like basic data types.

The following syntaxes are used to define union variables in C:

union union_identifier {
data_type union_member1_identifier;
data_type union_member2_identifier;
......
data_type union_membern_identifier;

} variable1_identifier [, variable2_identifier, ... , variablen_identifier];

union union_identifier variable1_identifier [, variable2_identifier, ... , variablen_identifier];

Several union variables definitions are presented below:
1 union t e s t {
2 i n t x ;
3 char y ;
4 } te s t1 , t e s t 2 ;
5

6 union t e s t t e s t3 , t e s t 4 ;

Accessing union members

The following two C operators are used to access members of a union [1]:

– The union member operator (.), also called the dot operator. This operator accesses
a union member using a union variable name.

– The union pointer operator (->), also called the arrow operator. This operator
accesses a union member using a pointer to the union.

Listing 8.3 presents a C program where the members of a union take values and then
are accessed using the member operator.

1 #inc lude <s td i o . h>
2

3 union number { /∗ de f i n e data type union number ∗/
4 i n t a ;
5 double b ;
6 } value ; /∗ d e f i n e va lue as a va r i ab l e o f type union number ∗/
7

8 i n t main (void) {
9 value . a = 100 ;

10 p r i n t f ("You i n s e r t e d a value in the i n t e g e r member o f the union number and
pr in t the va lue s o f both i t s members : %d\ t%.2 f \n" , va lue . a , va lue . b) ;

Lab 8 88

CPPL Structures, Unions and Enumerations in C

11 value . b = 100 . 0 0 ;
12 p r i n t f ("You i n s e r t e d a value in the double member o f the union number and

pr in t the va lue s o f both i t s members : %d\ t%.2 f \n" , va lue . a , va lue . b) ;
13 re turn 0 ;
14 }

Listing 8.3: Program L8Ex3.c

8.2.3 Enumerations

Enumerations enable the programmer to use suggestive names for integer constants.
The enumeration integer constants behave like symbolic constants with values automati-
cally set. By default, the values of integer constants within an enumeration begin at 0 and
are incremented by 1. Also, the values of the integer constants can be explicitly assigned
by the programmer using the assignment operator.

Definition

The following syntax is used to define an enumeration in C:

enum enum_identifier {constant1_identifier, ..., constantn_identifier};

where:

– enum_identifier is the name of the enumeration;
– One or more constants, separated by comma and specified by:

– constant_identifier.

Several enumeration definitions are presented below:
1 //R = 0 , G = 1 , B = 2
2 enum co l o r s {R, G, B} ;
3

4 //R = 255 , G = 255 , B = 255
5 enum c l s {R = 255 , G = 255 , B = 255} ;
6

7 //R = 5 , G = 6 , B = 10
8 enum c l {R = 5 , G, B = 10} ;

Definition of enumeration variables

An enumeration variable can either be defined through an enumeration definition, or
as a separate definition like basic data types.

The following syntaxes are used to define enumeration variables in C:

enum enum_identifier {constant1_identifier, ..., constantn_identifier}
variable1_identifier [, variable2_identifier, ... , variablen_identifier];

enum enum_identifier variable1_identifier [, variable2_identifier, ... , variablen_identifier];

Two enumeration variables definitions are presented below:
1 enum co l o r s {R, G, B} co l o r ;
2 enum co l o r s ye l low ;

Lab 8 89

CPPL Structures, Unions and Enumerations in C

Listing 8.4 presents a C program where an enumeration is used.
1 #inc lude <s td i o . h>
2

3 i n t main () {
4 enum number {one = 1 , two , three , four , f i v e } ;
5 enum number x , y ;
6 i n t z = 0 , w = 0 ;
7

8 x = two ;
9 y = three ;

10 z = 2 ∗ x + y ;
11 w = y − x ;
12 p r i n t f ("z = %d w = %d\n" , z , w) ;
13 re turn 0 ;
14 }

Listing 8.4: Program L8Ex4.c

8.2.4 Defining data types using symbolic names

In the C programming language a symbolic name can be assigned to a predefined data
type, or to a user-defined data type, using the typedef keyword.

The following syntax is used to assign a symbolic name to a user-defined data type in
C:

typedef type {...} type_name;

where:

– type could be any derived data type (struct, union or enum);
– type_name is the symbolic name that can be assigned to a predefined type.

Several new data type definitions are presented below:
1 // d e f i n i t i o n o f the Book s t r u c t data type
2 typede f s t r u c t {
3 char product_name [5 0] ;
4 char product_descr ipt ion [1 0 0] ;
5 double product_price ;
6 i n t product_id ;
7 } Product ;
8 // d e f i n i t i o n o f two Product v a r i a b l e s
9 Product product1 , product2 ;

10

11 // d e f i n i t i o n o f the Test union data type
12 typede f union {
13 char x [1 0] ;
14 double code ;
15 } Test ;
16 // d e f i n i t i o n o f two Test v a r i a b l e s
17 Test var i ab l e1 , va r i ab l e 2 ;
18

19 // d e f i n i t i o n o f the Boolean enum data type
20 typede f enum { f a l s e , t rue } Boolean ;
21 // d e f i n i t i o n o f two Boolean v a r i a b l e s
22 Boolean var iab l e1 , v a r i ab l e 2 ;

Lab 8 90

CPPL Structures, Unions and Enumerations in C

8.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Find the error in each of the following sequences of code:
Assume:

1 s t r u c t t e s t {
2 char test_name [3 0] ;
3 char t e s t_de s c r i p t i on [1 0 0] ;
4 } a , ∗ aptr ;
5 aptr = &a ;

a) printf("%s", *aptr->test_name);
Assume:

1 s t r u c t t e s t {
2 char test_name [3 0] ;
3 char t e s t_de s c r i p t i on [1 0 0] ;
4 } b [1 2] ;

b) printf("%s", b.test_name); (to print the member test_name of array element 5)
c)

1 union new {
2 i n t a ;
3 f l o a t b ;
4 char c ;
5 } ;
6 union new x = {1 . 3 } ;

d)
1 s t r u c t product {
2 i n t product_id ;
3 f l o a t product_price ;
4 char product_name [5 0] ;
5 } ;
6 product x ;

Assume the two previous definitions of struct test and struct product:

e)
1 s t r u c t t e s t t e s t 1 ;
2 s t r u c t product product1 ;
3 t e s t 1 = product1 ;

3. Write code for each of the following requirements:
a) Define a structure named test with two members: an integer test_number and an
array of characters test_ name with a size up to 30 characters long.
b) Define the synonym Test for the user-defined data type struct test.
c) Use Test to define variables t and t_array[10] of type struct test, and variable ptr
of type pointer to struct test.
d) Read from the keyboard values for the individual members of variable t.
e) Assign the value of variable t to element 4 of array t_array.
f) Assign the address of array t_array to the pointer variable ptr.
g) Display the values of element 4 of array t_array using the variable ptr and the
structure pointer operator.

Lab 8 91

CPPL Structures, Unions and Enumerations in C

4. Write a C program that prompts the users for their first and last names and, prints
the total number of letters in those names. Use pointer to structure and define the
following functions: get_info(), make_info(), show_info().

8.4 References

1. Paul Deitel, Harvey Deitel, C How to Program, 2022, Ninth edition, Pearson Educa-
tion, ISBN: 978-0-13-739839-3.

Lab 8 92

CPPL

Laboratory paper 9

Files in C

93

CPPL Files in C

9.1 Overview

– Presentation of the high level functions used for file management
– Use of high level functions for file management to develop C programs
– Work time: 2 hours

9.2 Theoretical Considerations

Files represent sequences of bytes used to store relevant information. The C program-
ming language can manage two types of files: text files and binary files.

Text files are standard .txt files that can be easily generated using basic text editors.
Their contents can be viewed as plain text and can easily be edited or deleted. These files
require minimum effort to maintain, are easily readable, and provide the lowest level of
security while occupying more storage space compared to binary files.

Binary files are typically .bin files that store the data in binary form (0’s and 1’s).
These files store higher amounts of data, are not easily readable and provide a better
security compared to text files.

The C programming language has several built-in library functions to perform file
management at a high level.

A pointer to a structure of type FILE is attached to each file in C:

FILE *pointer_identifier;

The type FILE and the prototypes of the file management functions are listed in the
<stdio.h> header file. The most commonly used are the following:

– For creating a new file or for opening an existing one: fopen;
– For closing a file: fclose;
– For writing chars, strings or other data into text files: fputc, fputs, fprintf;
– For reading chars, strings or other data from text files: fgetc, fgets, fscanf;
– For setting the file position indicator of a file to a given offset: fseek;
– For writing items into text and binary files: fwrite;
– For reading items from text and binary files: fread.

9.2.1 fopen

The fopen function creates a new file (text or binary) or opens an existing one.
The prototype of the fopen function is:

1 FILE ∗ fopen (const char ∗ f i l ename , const char ∗mode) ;

The fopen function returns a pointer of type FILE if successful, otherwise it returns
NULL.

filename is a string representing the name of the file or the path of the file.
mode is a string representing the access mode of the file which can have one of the

values presented in Table 9.1.
The following access modes are used to handle binary files: "rb", "wb", "ab", "rb+",

"r+b", "wb+", "w+b", "ab+", "a+b".

Lab 9 94

CPPL Files in C

Table 9.1: Access modes for text files [1]

Mode Description
r Opens an existing text file for reading purpose.

If the file does not exist, NULL is returned.
w Opens a text file for writing.

If the file does not exist, then it is created and the program starts writing
the data from the beginning of the file.
If the file exists, its content is overwritten.

a Opens a text file for writing in appending mode.
If the file does not exist, then it is created and the program starts
writing the data from the beginning of the file.
If the file exists, the program appends the data to the end of the file.

r+ Opens a text file for both reading and writing.
If the file does not exist, NULL is returned.

w+ Opens a text file for both reading and writing.
If the file does not exist, it is created.
If the file exists, its contents is overwritten.

a+ Opens a text file for both reading and appending.
If the file does not exist, it is created. The reading starts from the beginning
of the file, but the writing can only be appended.

9.2.2 fclose

The fclose function closes a file (text or binary).
The prototype of the fclose function is:

1 i n t f c l o s e (FILE ∗ fp) ;

The fclose function returns 0 if it successfully closes the file, or EOF (end-of-file) if
there is an error in closing it. EOF is a constant defined in the header file <stdio.h>.

fp is a pointer of type FILE representing an opened file (returned by fopen).

9.2.3 fputc, fputs, fprintf

The fputc function writes a character into a text file.
The prototype of the fputc function is:

1 i n t fputc (i n t ch , FILE ∗ fp) ;

The fputc function returns the ASCII code of the same character if successful, or EOF
if an error occurs.

ch is the ASCII code of the character to write.
fp is a pointer of type FILE representing an opened file (returned by fopen).

The fputs function writes a string into a text file.
The prototype of the fputs function is:

1 i n t fput s (const char ∗ s t r i ng , FILE ∗ fp) ;

The fputs function returns a non-negative value if successful, or EOF if an error occurs.
string is the string to write.
fp is a pointer of type FILE representing an opened file (returned by fopen).

Lab 9 95

CPPL Files in C

The fprintf function writes a formatted output into a text file.
The prototype of the fprintf function is:

1 i n t f p r i n t f (FILE ∗ fp , const char ∗ format [, e xp r e s s i on l i s t]) ;

The fprintf function returns the total number of items written into the file if successful,
or a negative value if an error occurs.

fp is a pointer of type FILE representing an opened file (returned by fopen).
format is specified as a string enclosed in double quotes ("). It can optionally include

embedded format tags that are substituted with the values provided in the expression list
and formatted as specified, as in the case of the printf function.

expression list contains the items to write.

9.2.4 fgetc, fgets, fscanf

The fgetc function reads a character from a text file.
The prototype of the fgetc function is:

1 i n t f g e t c (FILE ∗ fp) ;

The fgetc function returns the ASCII code of the character read from a file if successful,
or EOF if an error occurs.

fp is a pointer of type FILE representing an opened file (returned by fopen).

The fgets function reads a string from a text file.
The prototype of the fgets function is:

1 char ∗ f g e t s (char ∗ s t r i ng , i n t n , FILE ∗ fp) ;

The fgets function returns the string read from a file if successful, or NULL if an error
occurs.

string is the string where the characters read from the file is stored.
n is the maximum number of characters to be read.
fp is a pointer of type FILE representing an opened file (returned by fopen).

The fscanf function reads a formatted input from a text file. The prototype of the
fscanf function is:

1 i n t f s c a n f (FILE ∗ fp , const char ∗ format [, &va r i ab l e 1] [, &va r i ab l e 2] . . .) ;

The fscanf function returns the total number of items read from the file if successful,
or a negative value if an error occurs.

fp is a pointer of type FILE representing an opened file (returned by fopen).
format is specified as a string enclosed in double quotes ("). It contains embedded

format tags that specify the data types of the variable1, variable2, ..., as in the case of the
scanf function.

variable1, variable2, ... contains the variables where the items read from a file are
stored.

9.2.5 fseek

The file position indicator of a file tracks the location in the file where the next byte
will be read or written. It is represented as an integer that counts the number of bytes
from the beginning of the file.

Lab 9 96

CPPL Files in C

The fseek function sets the file position indicator of a file to a given offset.
The prototype of the fseek function is:

1 i n t f s e e k (FILE ∗ fp , long i n t o f f s e t , i n t whence) ;

The fseek function returns 0 if successful, or a non-zero value if an error occurs.
fp is a pointer of type FILE representing an opened file (returned by fopen).
offset is the number of bytes to offset from whence.
whence specifies the location where the offset starts and has the values presented in

Table 9.2.

Table 9.2: Constants that indicate the location where the offset starts

Whence Description
SEEK_SET Starts the offset from the beginning of the file.
SEEK_CUR Starts the offset from the current location of the cursor in the file.
SEEK_END Starts the offset from the end of the file.

The current position in a file, given as an offset in bytes from its beginning, is returned
by the ftell function which has the following prototype:

1 long i n t f t e l l (FILE ∗ fp) ;

To set the file position indicator of a file to the beginning of the file, the rewind
function should be used:

1 void rewind (FILE ∗ fp) ;

Listing 9.1 presents a C program which exemplifies the character and string oriented
file processing.

1 #inc lude <s td i o . h>
2

3 i n t main () {
4 char ch ;
5 char s t r i n g [1 0 0] ;
6 char f i le_name [5 0] = " f i l e . txt " ;
7 i n t i = 1 ;
8 FILE ∗ fp ;
9

10 fp = fopen (file_name , "w") ;
11 p r i n t f (" Please input a text to s t o r e in f i l e \"%s \" . Press Ctr l+Z to end . \

n" , f i le_name) ;
12 whi le ((ch = f g e t c (s td in)) != EOF) {
13 fputc (ch , fp) ;
14 }
15 f c l o s e (fp) ;
16

17 fp = fopen (file_name , " r+") ;
18 f s e e k (fp , 0 , SEEK_END) ;
19 p r i n t f ("\ nPlease input the s t r i n g s to append to the c rea ted f i l e . Press

Ctr l+Z to end . \ n") ;
20 whi le (f g e t s (s t r i ng , 100 , s td in) != NULL) {
21 f pu t s (s t r i ng , fp) ;
22 }
23 f c l o s e (fp) ;
24

25 p r i n t f ("\ nLines o f the f i l e s (numbered) : \ n") ;
26 fp = fopen (file_name , " r ") ;
27 whi le (f g e t s (s t r i ng , 100 , fp) != NULL) {

Lab 9 97

CPPL Files in C

28 p r i n t f ("%d %s" , i , s t r i n g) ;
29 i++;
30 }
31 f c l o s e (fp) ;
32 re turn 0 ;
33 }

Listing 9.1: Program L9Ex1.c

9.2.6 fwrite

The fwrite function writes items into a binary or text file.
The prototype of the fwrite function is:

1 s i ze_t fw r i t e (const void ∗ptr , s i z e_t size_of_elements , s i z e_t
number_of_elements , FILE ∗ fp) ;

The fwrite function returns the total number of items written into the file if successful.
If this number differs from the number_of_elements parameter, an error occurs.

ptr is a pointer to the array of items to be written.
size_of_elements is the size in bytes of each item to be written.
number_of_elements is the number of items, each one with a size of size_of_elements

bytes.
fp is a pointer of type FILE representing an opened file (returned by fopen).

9.2.7 fread

The fread function reads items from a binary or text file.
The prototype of the fread function is:

1 s i ze_t f r ead (void ∗ptr , s i z e_t size_of_elements , s i z e_t number_of_elements ,
FILE ∗ fp) ;

The fread function returns the total number of items read from the file if successful.
If this number differs from the number_of_elements parameter, an error occurs.

ptr is a pointer to the array of items to be read.
size_of_elements is the size in bytes of each item to be read.
number_of_elements is the number of items, each one with a size of size_of_elements

bytes.
fp is a pointer of type FILE representing an opened file (returned by fopen).
Listing 9.2 presents a C program which exemplifies the binary processing of files.

1 #inc lude <s td i o . h>
2

3 typede f s t r u c t {
4 char name [4 0] ;
5 i n t s a l a r y ;
6 } Record ;
7

8 void c r e a t e_ f i l e (const int , const char ∗) ;
9 void show_fi le (const char ∗) ;

10

11 i n t main () {
12 char f i le_name [4 0] = " f i l e . bin " ;
13 i n t n = 0 ;
14

15 p r i n t f (" Input the number o f persons , n : ") ;
16 s can f ("%d" , &n) ;

Lab 9 98

CPPL Files in C

17 c r e a t e_ f i l e (n , f i le_name) ;
18 p r i n t f ("\ nF i l e content : \ n") ;
19 show_fi le (f i le_name) ;
20 re turn 0 ;
21 }
22

23 void c r e a t e_ f i l e (const i n t n , const char ∗ f i l ename) {
24 FILE ∗ fp ;
25 Record rec ;
26 i n t i = 0 ;
27

28 fp = fopen (f i l ename , "wb") ;
29 i f (fp == NULL) {
30 p r i n t f ("Error ! ") ;
31 e x i t (1) ;
32 }
33

34 f o r (i = 1 ; i <= n ; i++) {
35 f f l u s h (s td in) ; // f f l u s h − c l e a r s or f l u s h e s the s td in bu f f e r
36 p r i n t f (" F i r s t and l a s t name o f the person : ") ;
37 f g e t s (r e c . name , s i z e o f (r e c . name) , s td in) ;
38 p r i n t f (" Sa lary : ") ;
39 s can f ("%d" , &rec . s a l a r y) ;
40 fw r i t e (&rec , s i z e o f (Record) , 1 , fp) ;
41 }
42 f c l o s e (fp) ;
43 }
44

45 void show_fi le (const char ∗ f i l ename) {
46 FILE ∗ fp ;
47 Record rec ;
48 i n t i = 1 ;
49

50 fp = fopen (f i l ename , " rb") ;
51 i f (fp == NULL) {
52 p r i n t f ("Error ! ") ;
53 e x i t (1) ;
54 }
55

56 p r i n t f ("\nNO.\ t SALARY \ t FIRST AND LAST NAME\n") ;
57 whi le (f r ead (&rec , s i z e o f (Record) , 1 , fp) > 0) {
58 p r i n t f ("%d \ t %d \ t \ t %s " , i , r e c . sa la ry , r e c . name) ;
59 i++;
60 }
61 f c l o s e (fp) ;
62 }

Listing 9.2: Program L9Ex2.c

9.3 Lab Tasks

1. Run the programs given as examples and analyze the output.

2. Write code to accomplish each of the following:
a) Open the file "file.txt" for writing (and creation) and assign the returned file
pointer to file_ptr.
b) Write a record to the file "file.txt". The record includes the integer account_num,
the string name and the floating-point current_balance. The record values are in-

Lab 9 99

CPPL Files in C

serted by the user from the keyboard.
c) Read a record from the file "file.txt" and put the values in the following variables:
integer account_num1, string name1 and floating-point current_balance1.
d) Display the values held by the variables account_num1, name1 and current_balance1.
e) Close the file "file.txt".

3. Write a C program to replace the text of a specific line in a file with another text,
and to delete a specific line from the file. The users of the program can perform these
operations repeatedly until the ’3’ key is pressed. Use a temporary text file and the
remove and rename built-in functions.

4. Write a C program to store information for a class of several students in a binary
file. Also, the program must conduct various statistical analyses based on the data
stored in the file. The users of the program can choose the statistical analysis from
a menu.

9.4 References

1. Paul Deitel, Harvey Deitel, C How to Program, 2010, Sixth edition, Pearson Educa-
tion, ISBN: 978-0-13-612356-9.

Lab 9 100

CPPL

Laboratory paper 10

Embedded Systems Programming
Case Study

101

CPPL Embedded Systems Programming Case Study

10.1 Overview

– Presentation of Webots environment
– Use of C concepts learned so far to develop embedded systems in Webots
– Work time: 2 hours

10.2 Theoretical Considerations

Webots is an open-source, multi-platform desktop application which offers a compre-
hensive development environment for modeling, programming, and simulating robotic sys-
tems [1]. Webots allows anyone with basic knowledge in one of the languages, C, C++,
Java, Python or MATLAB, to create 3D virtual worlds with physics properties where
mobile robots with different locomotion schemes can be programmed to follow a specific
behaviour.

A Webots simulation consists of the following components [2]:

– A Webots world file that defines one or more robots along with their environment;
– One or more controller programs for the robots;
– An optional physics plugin that can alter Webots’ standard physics behavior.

The Webots world includes a detailed description of each object of the 3D representa-
tion, such as its position, orientation, geometry, appearance, physical properties, type of
object. A Webots world is stored in a .wbt file, which is located in the "worlds" subdirec-
tory of a Webots project. The world file doesn’t contain the controller code of the robots,
instead, it specifies the name of the controller needed for each robot. The controller is a
computer program, written in one of the following programming languages C, C++, Java,
Python or MATLAB, that controls a robot defined in a world file. The source file of a
controller is located in the "controllers" subdirectory of a Webots project.

10.2.1 Webots installation and guided tour

Webots can be installed on Linux, Windows, and on macOs. The complete installation
instructions are presented in [3] for each individual operating system previously mentioned.

The installation procedure on Windows is a simple one that involves downloading the
installation kit for Windows (available at https://cyberbotics.com/), launching it
into execution and following the installations steps. Before installation, Webots system
requirements from https://cyberbotics.com/doc/guide/system-requirements should
be checked. Webots R2023b version was installed and used to implement the Webots
application from this laboratory paper.

After the installation is complete, Webots provides a quick overview of some robotics
simulations through the Webots guided tour. An example of two robotic arms simulation
running in Webots is presented in Figure 10.1. As can be seen in Figure 10.1, Webots
environment has three main areas:

– The center area – provides 3D viewing of the simulation;
– The left area – enables the programmers to manage and configure the components

of the simulation world;
– The right area – offers an integrated code editor for writing and compiling the con-

trollers for the robots.

Lab 10 102

https://cyberbotics.com/
https://cyberbotics.com/doc/guide/system-requirements

CPPL Embedded Systems Programming Case Study

Figure 10.1: Robotic arms simulation running in Webots

10.2.2 Development of a Webots application

Webots allows the development of an application that uses a robotic arm to sort the
luggage for different flights depending on a color tag, each color representing a different
flight number. The entire process of the application development is described in several
steps, as follows.

STEP 1: Launch the Webots environment and create a new project

After Webots is opened, from the File menu, select New − > New project directory. The
graphical user interfaces presented in Figures 10.2, 10.3, 10.4 appear and the name
of the project should be provided and also the name of the world file. Webots cre-
ates a directory having the name of the project and several subdirectories where worlds,
controllers, libraries, plugins, and protos can be defined. In this example, the file lug-
gage_sorter_robot.wbt is created in worlds folder.

Figure 10.2: Webots graphical user interface to choose a directory for the new project

Lab 10 103

CPPL Embedded Systems Programming Case Study

Figure 10.3: Webots graphical user interface to choose a name for the world file

Figure 10.4: Summary of the folders and files generated

STEP 2: Create and customize the virtual word (i.e., rectangular area, objects,
robots)

The Webots environment left area allows the customization of the rectangular area (type
of floor, floor size, wall thickness) and of the texture background. Next, predefined objects,
called PROTO nodes can be added in the simulation world on the rectangle area. For this
application, four conveyor belts are added, one for all the luggage and three for separating
the luggage according to a flight. The luggage are simulated using solid boxes customized
with different photos to change their aspects. Also, the recognition colors property is set
for these solid boxes in order to classify them for each flight. At the end of conveyor
belts there are metal storage boxes, and advertising boards with the flights numbers are
added to the conveyor belts as well. The robot chosen for this application is a robotic
arm of type UR10e with a Robotiq3fGripper (https://webots.cloud/run?url=https:
//github.com/cyberbotics/webots/blob/released/projects/robots/universal_ro
bots/protos/UR10e.proto). This robot has a camera attached, with a recognition node
and a distance sensor node. The robot is placed on a solid box. The controller property of
the robot makes the connection between the virtual world and the source code that ensures
the behavior of the robot. Therefore, a source code file having the name exactly like the
name of the controller property should be added to the project, as the next step shows.

Lab 10 104

https://webots.cloud/run?url=https://github.com/cyberbotics/webots/blob/released/projects/robots/universal_robots/protos/UR10e.proto
https://webots.cloud/run?url=https://github.com/cyberbotics/webots/blob/released/projects/robots/universal_robots/protos/UR10e.proto
https://webots.cloud/run?url=https://github.com/cyberbotics/webots/blob/released/projects/robots/universal_robots/protos/UR10e.proto

CPPL Embedded Systems Programming Case Study

All these objects can be easily added in the rectangular area using the Add a note
dialog (Figure 10.5) that allows the selection of predefined PROTO nodes.

Figure 10.5: Add a node dialog

Figure 10.6 presents the virtual world created for this application.

Figure 10.6: Virtual world after creating and positioning the objects (PROTO nodes)

STEP 3: Create a C source code file for the robot’s controller

Next, to add the robot’s controller file source, from the File menu, select New − > New
Robot Controller. The graphical user interfaces presented in Figure 10.7 appear and the
name of the programming language should be selected and the name of the controller
should be provided. Webots creates a source file with the main function, where the next
three functions from <webots/robot.h> are called: wb_robot_init() to initiliaze Webots

Lab 10 105

CPPL Embedded Systems Programming Case Study

components, wb_robot_step() to perform the simulation steps, and wb_robot_cleanup()
to cleanup Webots resources.

Figure 10.7: Webots graphical user interfaces to create a robot’s controller

In order to implement the behaviour of the robot to sort the luggage for different flights,
more lines of code should be added in the controller. Listing 10.1 presents the controller’s
code. It represents an adapted version of the controller from [4].

1 /∗ my_control ler . c ∗/
2

3 #inc lude <webots/ robot . h>
4 #inc lude <webots/ d i s tance_sensor . h>
5 #inc lude <webots/motor . h>
6 #inc lude <webots/ pos i t i on_senso r . h>
7 #inc lude <webots/ robot . h>
8 #inc lude <webots/camera . h>
9 #inc lude <webots/ camera_recognit ion_object . h>

10 #inc lude <s td i o . h>
11

12 #de f i n e TIME_STEP 32
13

Lab 10 106

CPPL Embedded Systems Programming Case Study

14 /∗ d e f i n i t i o n o f an enumeration data type which r ep r e s en t s the 5 s t ag e s o f
robot ’ s movements ∗/

15 enum State { WAITING, GRASPING, ROTATING, RELEASING, ROTATING_BACK } ;
16

17 i n t main () {
18 /∗ i n i t i a l i z a t i o n o f Webots robot ∗/
19 wb_robot_init () ;
20

21 /∗ d e f i n i t i o n and i n i t i a l i z a t i o n o f some va r i a b l e s ∗/
22 i n t i = 0 , j = 0 ;
23 i n t s t a t e = WAITING;
24

25 /∗ d e f i n i t i o n and i n i t i a l i z a t i o n o f cons tant s r ep r e s en t i ng the p o s i t i o n s
o f the j o i n t s ∗/

26 const double t a r g e t_pos i t i on s [] = { −1.3 , −3, −2.38 , −2};
27 const double t a rg e t_pos i t i on s1 [] = { −2.3 , 2 . 8 , −2.31 , −1.51};
28 const double t a rg e t_pos i t i on s2 [] = {−2, −1.6 , −2.5 , −1.51};
29

30 /∗ d e f i n i t i o n and i n i t i a l i z a t i o n o f v a r i a b l e s r ep r e s en t i ng the three
c o l o r s used f o r s o r t i n g the luggage ∗/

31 double r = 0 .00 , g = 0 .00 , b = 0 . 0 0 ;
32

33 /∗ d e f i n i t i o n and i n i t i a l i z a t i o n o f a va r i a b l e f o r the robot ’ s speed ∗/
34 double speed = 1 . 0 0 ;
35

36 /∗ d e f i n i t i o n and enab l ing o f the robot ’ s camera and camera r e c o gn i t i o n ∗/
37 WbDeviceTag camera = wb_robot_get_device ("camera") ;
38 wb_camera_enable (camera , 2 ∗ TIME_STEP) ;
39 wb_camera_recognition_enable (camera , 2 ∗ TIME_STEP) ;
40

41 /∗ d e f i n i t i o n and i n i t i l i z a t i o n o f an array f o r the g r ippe r part o f the
robot ∗/

42 WbDeviceTag hand_motors [3] ;
43 hand_motors [0] = wb_robot_get_device (" f inger_1_joint_1") ;
44 hand_motors [1] = wb_robot_get_device (" f inger_2_joint_1") ;
45 hand_motors [2] = wb_robot_get_device (" f inger_middle_joint_1") ;
46

47 /∗ d e f i n i t i o n and i n i t i l i z a t i o n o f an array f o r the robot ’ s main body ∗/
48 WbDeviceTag ur_motors [4] ;
49 ur_motors [0] = wb_robot_get_device (" shou l d e r_ l i f t_ j o i n t ") ;
50 ur_motors [1] = wb_robot_get_device (" elbow_joint ") ;
51 ur_motors [2] = wb_robot_get_device ("wrist_1_joint ") ;
52 ur_motors [3] = wb_robot_get_device ("wrist_2_joint ") ;
53

54 /∗ d e f i n i t i o n and enab l ing o f the d i s t anc e s enso r attached to the robot ∗/
55 WbDeviceTag d i s tance_sensor = wb_robot_get_device (" d i s t anc e s enso r ") ;
56 wb_distance_sensor_enable (d is tance_sensor , TIME_STEP) ;
57

58 /∗ d e f i n i t i o n and enab l ing o f the po s i t i o n senso r attached to the robot ∗/
59 WbDeviceTag pos i t i on_senso r = wb_robot_get_device ("wrist_1_joint_sensor ") ;
60 wb_position_sensor_enable (pos i t ion_sensor , TIME_STEP) ;
61

62 /∗ s e t t i n g the speed to the motors o f the robot ’ s main body ∗/
63 f o r (i = 0 ; i < 4 ; ++i)
64 wb_motor_set_velocity (ur_motors [i] , speed) ;
65

66 /∗ s e t t i n g the i n i t i a l p o s i t i o n o f the robot ∗/
67 f o r (i = 0 ; i < 4 ; ++i)
68 wb_motor_set_position (ur_motors [i] , 0 . 0) ;
69 f o r (i = 0 ; i < 3 ; ++i)
70 wb_motor_set_position (hand_motors [i] , 0 . 0 5) ;

Lab 10 107

CPPL Embedded Systems Programming Case Study

71

72

73 /∗ main loop to perform s imu la t i on s t ep s o f TIME_STEP mi l l i s e c ond s and
l eave the loop when the s imu la t i on i s over ∗/

74 whi le (wb_robot_step (TIME_STEP) != −1) {
75 p r i n t f (" s ta r t −−−−−−−−−−−−−−−−−−−−−\n") ;
76

77 /∗ d e f i n i t i o n and i n i t i a l i z a t i o n o f the number o f ob j e c t s r e cogn i z ed by
the robot ’ s camera ∗/

78 i n t number_of_objects = wb_camera_recognition_get_number_of_objects (
camera) ;

79 p r i n t f ("\nNumber o f luggages : %d . \ n" , number_of_objects) ;
80

81 const WbCameraRecognitionObject ∗ ob j e c t s =
wb_camera_recognition_get_objects (camera) ;

82

83 /∗ c o l o r e x t r a c t i on based on the s o l i d box r e c ogn i t i onCo l o r s property ∗/
84 f o r (i = 0 ; i < number_of_objects ; ++i) {
85 f o r (j = 0 ; j < ob j e c t s [i] . number_of_colors ; ++j) {
86 r = ob j e c t s [i] . c o l o r s [3 ∗ j] ;
87 g = ob j e c t s [i] . c o l o r s [3 ∗ j + 1] ;
88 b = ob j e c t s [i] . c o l o r s [3 ∗ j + 2] ;
89 i f (r == 1.000000 && g == 0.000000 && b == 0.000000)
90 p r i n t f ("FLIGHT NUMBER: W61343\n") ;
91 e l s e i f (r == 0.000000 && g == 1.000000 && b == 0.000000)
92 p r i n t f ("FLIGHT NUMBER: AM3645\n") ;
93 e l s e i f (r == 0.000000 && g == 0.000000 && b == 1.000000)
94 p r i n t f ("FLIGHT NUMBER: F3954\n") ;
95 }
96 }
97

98 /∗ robot ’ s behaviour implementation taken in to account the s t a t e s o f the
arm ∗/

99 switch (s t a t e) {
100 case WAITING:
101 f o r (i = 0 ; i < 3 ; ++i)
102 wb_motor_set_position (hand_motors [i] , 0 . 0 5) ;
103 p r i n t f ("Distance : %l f \n" , wb_distance_sensor_get_value (

d i s tance_sensor)) ;
104 f f l u s h (stdout) ;
105 i f (wb_distance_sensor_get_value (d i s tance_sensor) < 300 &&

wb_distance_sensor_get_value (d i s tance_sensor) > 100) {
106 s t a t e = GRASPING;
107 p r i n t f ("Grasping ob j e c t \n") ;
108 f o r (i = 0 ; i < 3 ; ++i)
109 wb_motor_set_position (hand_motors [i] , 0 . 8 5) ;
110 }
111 break ;
112 case GRASPING:
113 i f (r == 1.000000 && g == 0.000000 && b == 0.000000)
114 f o r (i n t i = 0 ; i < 4 ; ++i)
115 wb_motor_set_position (ur_motors [i] , t a r g e t_pos i t i on s2 [i]) ;
116 e l s e i f (r == 0.000000 && g == 1.000000 && b == 0.000000)
117 f o r (i = 0 ; i < 4 ; ++i)
118 wb_motor_set_position (ur_motors [i] , t a r g e t_pos i t i on s1 [i]) ;
119 e l s e i f (r == 0.000000 && g == 0.000000 && b == 1.000000)
120 f o r (i = 0 ; i < 4 ; i++)
121 wb_motor_set_position (ur_motors [i] , t a r g e t_pos i t i on s [i]) ;
122 p r i n t f ("Rotating arm\n") ;
123 s t a t e = ROTATING;
124 break ;

Lab 10 108

CPPL Embedded Systems Programming Case Study

125 case ROTATING:
126 i f (wb_position_sensor_get_value (pos i t i on_senso r) < −2.3) {
127 p r i n t f (" Re l eas ing ob j e c t \n") ;
128 s t a t e = RELEASING;
129 f o r (i = 0 ; i < 3 ; ++i)
130 wb_motor_set_position (hand_motors [i] , wb_motor_get_min_position (

hand_motors [i])) ;
131 }
132 break ;
133 case RELEASING:
134 f o r (i = 0 ; i < 4 ; ++i)
135 wb_motor_set_position (ur_motors [i] , 0 . 0) ;
136 p r i n t f ("Rotating arm back\n") ;
137 s t a t e = ROTATING_BACK;
138 break ;
139 case ROTATING_BACK:
140 i f (wb_position_sensor_get_value (pos i t i on_senso r) > −0.1) {
141 s t a t e = WAITING;
142 p r i n t f ("Waiting ob j e c t \n") ;
143 }
144 break ;
145 }
146 p r i n t f ("−−−−−−−−−−−−−−−−−−−−−−−end\n") ;
147 }
148

149 /∗ c l e an ing up Webots r e s ou r c e s ∗/
150 wb_robot_cleanup () ;
151 re turn 0 ;
152 }

Listing 10.1: Program L10Ex1.c

To build the controller’s code, select Build from the Build menu. This operation creates
the connection between the robot in the simulation world and its behavior implemented in
C. If if there are no errors reported in the building phase, then select Real-time from the
Simulation menu to see the application running.

10.3 Lab Tasks

1. Install Webots environment on your computers.

2. Go through the instructions in section 10.2.2 step by step and create the application.

10.4 References

1. Webots, https://cyberbotics.com/#webots, Accessed in September 2024.
2. Webots User Guide, https://cyberbotics.com/doc/guide/introduction-to-web

ots, Accessed in September 2024.
3. Webots User Guide, https://cyberbotics.com/doc/guide/installation-proce

dure, Accessed in September 2024.
4. Sorting of objects based on their color using a robotic arm in WEBOTS Software,

https://drive.google.com/file/d/1E8nTn6trffT3joGyED4TO6PPOKz5X4F_/view,
Accessed in September 2024.

Lab 10 109

https://cyberbotics.com/#webots
https://cyberbotics.com/doc/guide/introduction-to-webots
https://cyberbotics.com/doc/guide/introduction-to-webots
https://cyberbotics.com/doc/guide/installation-procedure
https://cyberbotics.com/doc/guide/installation-procedure
https://drive.google.com/file/d/1E8nTn6trffT3joGyED4TO6PPOKz5X4F_/view

CPPL

Appendix - Data Representation in
Computer Memory

110

CPPL Data Representation in Computer Memory

The computers stores data in binary form. Binary data are made up of binary digits
(digits 0 and 1). A binary digit, or bit, is the smallest unit of data in computing. The
hexadecimal (base 16) or octal (base 8) number systems are also used as a compact form
for representing binary data.

The way in which various types of data (integers, floating-point numbers, characters)
transmitted by programs are converted into binary data and represented in the computer’s
memory is presented in the following.

1 Integer Data Representation

In general, computers use a fixed number of bits to represent an integer (8 bits, 16 bits,
32 bits or 64 bits) and also the next two representation schemes:

– Unsigned integers – this scheme can represent zero and positive integers;
– Signed integers – this scheme can represent zero, positive and negative integers.

Three representation schemes can be used for signed integers:

– Sign-magnitude representation;
– 1’s complement representation;
– 2’s complement representation.

The C programming language uses 16 bits (2 bytes) to represent a short integer, and
32 bits (4 bytes) to represent an integer or a long integer. In the following, the aspects
related to integers represented on 32 bits are discussed (the same schemes apply to short
integers as well, the only difference being the length of the representation, 16 bits).

1.1 Unsigned integers representation in C

An unsigned decimal integer is converted in binary and represented according to the bit-
length, 32 bits (zeros are added to the left to complete the bit-length of the representation).

Figure 1 presents an example of unsigned integer number binary representation in the
computer’s memory.

Figure 1: Example of an unsigned integer number representation

Appendix 111

CPPL Data Representation in Computer Memory

1.2 Signed integers representation in C

A decimal signed integer is represented using 2’s complement scheme. This scheme avoids
having two representations for 0, allows positive integer numbers and negative integer
numbers to be treated in the same way, and more importantly, makes it easier to do
arithmetic with negative integer numbers (the addition and subtraction are treated as one
operation).

The 2’s complement of positive integer numbers is obtained using the same method
as in case of unsigned integers. The positive integer number is converted in binary and
represented according to the bit-length, 32 bits (zeros are added to the left to complete
the bit-length of the representation).

The 2’s complement of negative integer numbers is obtained according to the next
algorithm:

– Step 1. The absolute value of the negative integer number is converted in binary.
– Step 2. All the digits are inverted (0 becomes 1 and 1 becomes 0).
– Step 3. 1 is added to the result.

Figure 2 presents an example of signed integer number (negative) binary representation
in the computer’s memory.

Figure 2: Example of a negative integer number representation

2 Floating-Point Data Representation

In computers, floating-point numbers are represented in the scientific notation, with a
fraction (F), and an exponent (E) of a certain radix (r), in the form of F ∗rE . F and E can

Appendix 112

CPPL Data Representation in Computer Memory

be positive or negative. Decimal numbers use radix of 10 (F ∗ 10E), while binary numbers
use radix of 2 (F ∗ 2E).

Modern computers implement the IEEE 754 Standard for representing floating-point
numbers. There are two representation schemes:

– 32-bit single-precision;
– 64-bit double-precision.

The C programming language uses a 32-bit single precision scheme to represent a
float, and 64-bit double precision to represent a double. In the following, the aspects
related to floats represented on 32 bits and doubles represented on 64 bits are discussed.

2.1 Floats representation in C

According to the IEEE 754 Standard the significance of the 32 bits of a float is as follows
(Figure 3):

– The most significant bit (S) is the sign bit with 0 for positive float numbers and 1
for negative float numbers;

– The following 8 bits represent the biased exponent (e);
– The remaining 23 bits represent the fraction (F) (also called the mantissa or signifi-

cand);
– Between the actual exponent (E) and the biased exponent (e) there is the formula:
E = e− 127.

Figure 3: Floats representation

The 32-bit single precision representation of positive and negative floats numbers in-
volves calculating the values for the sign bit (S), biased exponent (e) and fraction (F)
according to the next algorithm:

– Step 1. The absolute value of the float number is converted in binary (both the
integer part and the fractional part are converted in binary following the specific
conversion rules).

– Step 2. The fractional part is normalized so that in the normalized form, there is
only one non-zero digit to the left of the radix point. The exponent (E) is obtained
in this step (the power of 2), as well as the fraction (F).

– Step 3. If the float is positive, then the sign bit (S) is 0, otherwise it is 1.
– Step 4. The biased exponent (e) is calculated based on the formula e − 127 = E.

The result is converted in binary.
– Step 5. The number is represented using the values of S, e and F (previously calcu-

lated).

Figure 4 presents an example of a positive float number binary representation in the
computer’s memory.

Appendix 113

CPPL Data Representation in Computer Memory

Figure 4: Example of a positive float number representation

2.2 Doubles representation in C

According to the IEEE 754 Standard the significance of the 64 bits of a double is as
follows (Figure 5):

– The most significant bit (S) is the sign bit with 0 for positive double numbers and 1
for negative double numbers;

– The following 11 bits represent the biased exponent (e);
– The remaining 52 bits represent the fraction (F) (also called the mantissa or signifi-

cand);
– Between the actual exponent (E) and the biased exponent (e) there is the formula:
E = e− 1023.

Figure 5: Doubles representation

The 64-bit single precision representation of positive and negative double numbers
involves calculating the values for the sign bit (S), biased exposent (e) and fraction (F)
according to the next algorithm:

– Step 1. The absolute value of the double number is converted in binary (both the
integer part and the fractional part are converted in binary following the specific
conversion rules).

– Step 2. The fractional part is normalized so that in the normalized form, there is
only one non-zero digit to the left of the radix point. The exponent (E) is obtained
in this step (the power of 2), as well as the fraction (F).

Appendix 114

CPPL Data Representation in Computer Memory

– Step 3. If the double is positive, then the sign bit (S) is 0, otherwise it is 1.
– Step 4. The biased exponent (e) is calculated based on the formula e − 1023 = E.

The result is converted in binary.
– Step 5. The number is represented using the values of S, e and F (previously calcu-

lated).

Figure 6 presents an example of a negative double number binary representation in the
computer’s memory.

Figure 6: Example of a negative double number representation

3 Character Data Representation

Character data is composed of letters, symbols, and numerals that are not used in cal-
culations. Character data is commonly referred to as text. In computer memory, character
data are represented using several encoding schemes. Some of them are listed in the fol-
lowing:

– ASCII (American Standard Code for Information Interchange) requires 7 bits for
each character. It provides codes for 128 characters;

– Extended ASCII extends ASCII and uses 8 bits for each character. Using 8 bits
instead of 7 bits allows Extended ASCII to provide codes for 256 characters;

– Unicode uses 16 bits and provides codes for 65 000 characters. It can be used for
representing the alphabets of multiple languages;

– UTF-8 (Unicode Transformation Format - 8-bit) is a variable-length coding scheme
that uses 7 bits for common ASCII characters and 16 bits Unicode as necessary.

The C programming language uses 8 bits to represent a character. The ASCII/Ex-
tended ASCII scheme is used. The integer value of the character, according to the encoding

Appendix 115

CPPL Data Representation in Computer Memory

scheme, is stored in the computer’s memory.

3.1 Unsigned characters representation in C

An unsigned character has values in the range from 0 to 255 and is represented using 8
bits in the computer’s memory and Extended ASCII encoding scheme. The decimal value
of the ASCII code of the character is converted in binary and represented according to the
bit-length, 8 bits.

Figure 7 presents an example of an unsigned character binary representation in the
computer’s memory.

Figure 7: Example of an unsigned character representation

3.2 Signed characters representation in C

A signed character has values in range the range from -127 to 128 and is represented
using 8 bits in the computer’s memory and Extended ASCII encoding scheme. Since a
signed character can have a negative value, its representation in binary follows the 2’s
complement scheme rules. The ASCII code of the character is converted in binary and
represented according to the bit-length, 8 bits.

Figure 8 presents an example of a signed character binary representation in the com-
puter’s memory.

Figure 8: Example of a signed character representation

Appendix 116

CPPL Data Representation in Computer Memory

Bibliography

1. Two’s Complement, https://www.cs.cornell.edu/~tomf/notes/cps104/twoscom
p.html, Accessed in September 2024.

2. IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, https://ir
emi.univ-reunion.fr/IMG/pdf/ieee-754-2008.pdf, Accessed in September 2024.

3. ASCII Table, https://www.ascii-code.com/, Accessed in September 2024.

Appendix 117

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://iremi.univ-reunion.fr/IMG/pdf/ieee-754-2008.pdf
https://iremi.univ-reunion.fr/IMG/pdf/ieee-754-2008.pdf
https://www.ascii-code.com/

	C Input/Output (I/O)
	Overview
	Theoretical Considerations
	scanf and printf
	sscanf and sprintf
	getchar and putchar
	gets and puts

	Lab Tasks
	References

	Data Types and Expressions in C
	Overview
	Theoretical Considerations
	Basic data types in C
	Expressions in C
	Operators in C
	Data types default conversions

	Lab Tasks
	References

	Statements in C
	Overview
	Theoretical Considerations
	Labeled statements
	Expression statements
	Decision making (selection) statements
	Loop (iteration) statements
	Jump statements

	Lab Tasks
	References

	Pointers in C
	Overview
	Theoretical Considerations
	Pointer variable definition
	Pointer variable initialization (assignment)
	Dereferencing a pointer
	Pointer to void
	Constant pointers
	Pointer arithmetic
	Pointers and arrays
	Array of pointers
	Pointer to pointer

	Lab Tasks
	References

	Functions in C
	Overview
	Theoretical Considerations
	Function definition
	Function declaration
	Function call
	Function pointers
	Recursion
	The C Standard Library

	Lab Tasks
	References

	Dynamic Memory Allocation and Modular Programming
	Overview
	Theoretical Considerations
	Dynamic memory allocation
	Variables' scope
	Modular programming

	Lab Tasks
	References

	Strings in C
	Overview
	Theoretical Considerations
	String variable definition and initialization
	Internal memory representation of a string
	Array of strings
	Internal memory representation of an array of strings
	Standard string processing functions

	Lab Tasks
	References

	Structures, Unions and Enumerations in C
	Overview
	Theoretical Considerations
	Structures
	Unions
	Enumerations
	Defining data types using symbolic names

	Lab Tasks
	References

	Files in C
	Overview
	Theoretical Considerations
	fopen
	fclose
	fputc, fputs, fprintf
	fgetc, fgets, fscanf
	fseek
	fwrite
	fread

	Lab Tasks
	References

	Embedded Systems Programming Case Study
	Overview
	Theoretical Considerations
	Webots installation and guided tour
	Development of a Webots application

	Lab Tasks
	References

	Appendix - Data Representation in Computer Memory
	Blank Page
	Blank Page

